Quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait variation. It is often infeasible to detect multiple interacting QTL due to main effects often be...Quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait variation. It is often infeasible to detect multiple interacting QTL due to main effects often being confounded by interaction effects. Positioning interacting QTL within a small region is even more difficult. We present a variance component approach nested in an empirical Bayesian method, which simultaneously takes into account additive, dominance and epistatic effects due to multiple interacting QTL. The covariance structure used in the variance component approach is based on combined linkage disequilibrium and linkage (LDL) information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to simultaneously fine map interacting QTL using the proposed approach. The present method combined with LDL information can efficiently detect QTL and their dominance and epistatic effects, making it possible to simultaneously fine map main and epistatic QTL.展开更多
Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become...Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach.展开更多
基金Project supported by the International Pig Improvement Company(PIC) and Sheep Genomics, Australia
文摘Quantitative trait loci (QTL) and their additive, dominance and epistatic effects play a critical role in complex trait variation. It is often infeasible to detect multiple interacting QTL due to main effects often being confounded by interaction effects. Positioning interacting QTL within a small region is even more difficult. We present a variance component approach nested in an empirical Bayesian method, which simultaneously takes into account additive, dominance and epistatic effects due to multiple interacting QTL. The covariance structure used in the variance component approach is based on combined linkage disequilibrium and linkage (LDL) information. In a simulation study where there are complex epistatic interactions between QTL, it is possible to simultaneously fine map interacting QTL using the proposed approach. The present method combined with LDL information can efficiently detect QTL and their dominance and epistatic effects, making it possible to simultaneously fine map main and epistatic QTL.
基金co-supported by Grant for State Key Program for Basic Research of China(No.2013CB329405)National Natural Science Foundation of China(Nos.61104214,61203222)+3 种基金Foundation for Innovative Research Groups of the National Natural Science Foundation of China(No.61221063)Specialized Research Fund for the Doctoral Program of Higher Education(No.20120201120036)China Postdoctoral Science Foundation(No.20100481337),China Postdoctoral Science Foundation-Special fund(No.201104670)Fundamental Research Funds for the Central Universities
文摘Belief functions theory is an important tool in the field of information fusion. However, when the cardinality of the frame of discernment becomes large, the high computational cost of evidence combination will become the bottleneck of belief functions theory in real applications. The basic probability assignment (BPA) approximations, which can reduce the complexity of the BPAs, are always used to reduce the computational cost of evidence combination. In this paper, both the cardinalities and the mass assignment values of focal elements are used as the criteria of reduction. The two criteria are jointly used by using rank-level fusion. Some experiments and related analyses are provided to illustrate and justify the proposed new BPA approximation approach.