The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g...This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.展开更多
Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)C...Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.展开更多
Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.Th...Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.展开更多
Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a se...Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.展开更多
Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a spe...Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a specific color piece of target tracking. For multi-sensor fusion of three methods,quaternion method is used to correct the attitude,the stability of AGV robot visual information acquisition and image clarity are improved.展开更多
Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "L...Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.展开更多
A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion u...A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.展开更多
Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual charac...Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.展开更多
For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intell...For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information entropy.First,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep features.Finally,the advantage of the deep belief network probability model is used as the fault classifier to identify the faults.The effectiveness of the proposed method was verified by a gearbox test-bed.Experimental results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy.展开更多
in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativ...in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.展开更多
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter...Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.展开更多
This paper studied on the clustering problem for intrusion detection with the theory of information entropy, it was put forward that the clustering problem for exact intrusion detection based on information entropy is...This paper studied on the clustering problem for intrusion detection with the theory of information entropy, it was put forward that the clustering problem for exact intrusion detection based on information entropy is NP complete, therefore, the heuristic algorithm to solve the clustering problem for intrusion detection was designed, this algorithm has the characteristic of incremental development, it can deal with the database with large connection records from the internet.展开更多
This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linea...This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linear transfor- mation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon's information entropy. The relationships between the properties of dissipative parameters, system singularity strength parameter, quasimonochromatic noise, and their effects on information entropy are discussed.展开更多
Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the pass...Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the passive sensor is not fully utilized, and there is a certain ambiguity in the assignment relationship of the emitters-ship. They can’t conclude the accurate and reliable assignment relationship of the emitters-ship. Therefore, this paper proposes a comprehensive correlation discriminant method to obtain a more reliable and comprehensive emitters-ship assignment, and then uses information entropy method to identify the type of the target ship on the basis of this association and assign the credibility. The simulation results show that this algorithm can effectively solve the problem of target ship type identification using the information of multi-passive sensors.展开更多
A novel outlier recognition method in surveying data is presented based on Shannon information entropy. The probability distribution of surveying data does not need to be known or hypothesized in this method, and it i...A novel outlier recognition method in surveying data is presented based on Shannon information entropy. The probability distribution of surveying data does not need to be known or hypothesized in this method, and it is not only accurate but also convenient to calculate in this method compared with statistical recognition method.展开更多
Under minimum squared error (MSE) rule, discrete K L transform (DKLT) was given. The 2nd information function, the 2nd information entropy and geometry entropy under DKLT were proposed, by which information characteri...Under minimum squared error (MSE) rule, discrete K L transform (DKLT) was given. The 2nd information function, the 2nd information entropy and geometry entropy under DKLT were proposed, by which information characteristics of DKLT were metricized. Two new concepts of information rate (IR) and accumulated information rate (AIR) were proposed by which the degree of information feature compression of DKLT was illustrated.展开更多
Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or disting...Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or distinguish between abnormal and normal tissues on images. In the phase of classification, a set of image features and/or texture features extracted from the images are commonly used. In this article, we investigated the characteristic of the output entropy of an image and demonstrated the usefulness of the output entropy acting as a texture feature in CAD systems. In order to validate the effectiveness and superiority of the output-entropy-based texture feature, two well-known texture features, i.e., mean and standard deviation were used for comparison. The database used in this study comprised 50 CT images obtained from 10 patients with pulmonary nodules, and 50 CT images obtained from 5 normal subjects. We used a support vector machine for classification. A leave-one-out method was employed for training and classification. Three combinations of texture features, i.e., mean and entropy, standard deviation and entropy, and standard deviation and mean were used as the inputs to the classifier. Three different regions of interest (ROI) sizes, i.e., 11 × 11, 9 × 9 and 7 × 7 pixels from the database were selected for computation of the feature values. Our experimental results show that the combination of entropy and standard deviation is significantly better than both the combination of mean and entropy and that of standard deviation and mean in the case of the ROI size of 11 × 11 pixels (p < 0.05). These results suggest that information entropy of an image can be used as an effective feature for CAD applications.展开更多
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa...There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.展开更多
This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotati...This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金supported by the National Natural Science Foundation of China (61171194)
文摘This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection.
基金supported by the National Natural Science Foundation of China(Nos.11975091 and U1732135)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(No.21IRTSTHN011)。
文摘Configurational information entropy(CIE)theory was employed to determine the neutron-skin thickness of neutron-rich calcium isotopes.The nuclear density distributions and fragment cross sections in 350 MeV/u ^(40-60)Ca+^(9)Be projectile fragmentation reactions were calculated using a modified statistical abrasion-ablation model.CIE quantities were determined from the nuclear density,isotopic,mass,and charge distributions.The linear correlations between the CIE determined using the isotopic,mass,and charge distributions and the neutron-skin thickness of the projectile nucleus show that CIE provides new methods to extract the neutron-skin thickness of neutron-rich nuclei.
基金the National Natural Science Foundation of China(No.11975091)the Program for Innovative Research Team(in Science and Technology)in the University of Henan Province,China(No.21IRTSTHN011).
文摘Configurational information entropy(CIE)analysis has been shown to be applicable for determining the neutron skin thickness(δnp)of neutron-rich nuclei from fragment production in projectile fragmentation reactions.The BNN+FRACS machine learning model was adopted to predict the fragment mass cross-sections(σ_(A))of the projectile fragmentation reactions induced by calcium isotopes from ^(36)Ca to ^(56)Ca on a ^(9)Be target at 140MeV/u.The fast Fourier transform was adopted to decompose the possible information compositions inσA distributions and determine the quantity of CIE(S_(A)[f]).It was found that the range of fragments significantly influences the quantity of S_(A)[f],which results in different trends of S_(A)[f]~δnp correlation.The linear S_(A)[f]~δnp correlation in a previous study[Nucl.Sci.Tech.33,6(2022)]could be reproduced using fragments with relatively large mass fragments,which verifies that S_(A)[f]determined from fragmentσAis sensitive to the neutron skin thickness of neutron-rich isotopes.
基金the National High Technology Research and Development Programme of China(No.2006AA04Z220)National Natural Science Foundation of China(No.60705027)Program for Changjiang Scholars and Innovative Research Team in University(PCSIRT)(No.IRT0423)
文摘Configuration information acquisition and matching are two important steps in the self-reconfiguring process of self-reconfigurable robots. The process of configuration information acquisition was introduced, and a self-reconfiguring configuration matching strategy based on graded optimization mechanism was proposed. The first-grade optimization was to search common connection between matching scheme and goal configuration. The second-grade optimization, whose object function was constructed in terms of configuration connectivity, was to search connnon topology according to the results of the first-grade optimization. The entire process of configuration information acquisition and matching was verified by an experiment and genetic algorithm (GA). The result shows the accuracy of the configuration information acquisition and the effectiveness of the configuration matching method.
基金supported by the National Key Technology R&D Program(2015BAK06B04)the key technology R&D Program of Tianjin(14ZCZDSF00022,15ZXZNGX00260)
文摘Visual information acquisition is an important component of the AGV robot. The system adopts STM32F4 embedded application of the ARM Cortex-M4 kernel as the main control module,using shift algorithm to finish on a specific color piece of target tracking. For multi-sensor fusion of three methods,quaternion method is used to correct the attitude,the stability of AGV robot visual information acquisition and image clarity are improved.
基金Project supported by the National Natural Science Foundation of China(Grant No.11375005)partially by 20150964-SIP-IPN,Mexico
文摘Calculations of the quantum information entropy have been extended to a non-analytically solvable situation. Specifically, we have investigated the information entropy for a one-dimensional system with a schematic "Landau" potential in a numerical way. Particularly, it is found that the phase transitional behavior of the system can be well expressed by the evolution of quantum information entropy. The calculated results also indicate that the position entropy S_x and the momentum entropy S_p at the critical point of phase transition may vary with the mass parameter M but their sum remains as a constant independent of M for a given excited state. In addition, the entropy uncertainty relation is proven to be robust during the whole process of the phase transition.
文摘A multi-layer controller architecture based on digital signal processor (DSP) and on-chip MCU was proposed for multi-sensor information acquisition system; it consisted of a data acquisition unit and a data fusion unit, and used a host controller to connect the two units into an integrated system. Compared with architectures of traditional acquisition system, this architecture had good openness and good adaptability of algorithms in hardware. To validate its feasibility, a small-scale prototype was cleverly designed, which adopted ADμCS12, TMS320F206 and 89C51 as controllers, and had 16-channel ADC and 12- channel DAC with high accuracy of 12-bit. The interfaces between different controllers were introduced in detail. Some basic parameters of the prototype were presented by board-level tests and by comparison with other two systems. The prototype was employed to provide on-line state measurement, parameter estimation and decision-making for trajectory tracking of wheeled mobile robot. Experimental results show that the prototype achieves the goals of data acquisition, fusion and control perfectly.
基金Project(50934006) supported by the National Natural Science Foundation of ChinaProject(2010CB732004) supported by the National Basic Research Program of China+1 种基金Project(2009ssxt230) supported by the Central South University Innovation Fund,ChinaProject(CX2011B119) supported by the Graduated Students’Research and Innovation Fund of Hunan Province,China
文摘Due to the complex features of rock mass blastability assessment systems, an evaluation model of rock mass blastability was established on the basis of the unascertained measurement (UM) theory and the actual characteristics of the project. Considering a comprehensive range of intact rock properties and discontinuous structures of rock mass, twelve main factors influencing the evaluation blastability of rock mass were taken into account in the UM model, and the blastability evaluation index system of rock mass was constructed. The unascertained evaluation indices corresponding to the selected factors for the actual situation were solved both qualitatively and quantitatively. Then, the UM function of each evaluation index was obtained based on the initial data for the analysis of the blastability of six rock mass at a highway improvement cutting site in North Wales. The index weights of the factors were calculated by entropy theory, and credible degree identification (CDI) criteria were established according to the UM theory. The results of rock mass blastability evaluation were obtained by the CDI criteria. The results show that the UM model assessment results agree well with the actual records, and are consistent with those of the fuzzy sets evaluation method. Meanwhile, the unascertained superiority degree of rock mass blastability of samples S1-$6 which can be calculated by scoring criteria are 3.428 5, 3.453 3, 4.058 7, 3.675 9, 3.516 7 and 3.289 7, respectively. Furthermore, the proposed method can take into account large amount of uncertain information in blastability evaluation, which can provide an effective, credible and feasible way for estimating the blastability of rock mass. Engineering practices show that it can complete the blastability assessment systematically and scientifically without any assumption by the proposed model, which can be applied to practical engineering.
基金Supported by National Natural Science Foundation of China and Civil Aviation Administration of China Joint Funded Project(Grant No.U1733108)Key Project of Tianjin Science and Technology Support Program(Grant No.16YFZCSY00860).
文摘For a single-structure deep learning fault diagnosis model,its disadvantages are an insufficient feature extraction and weak fault classification capability.This paper proposes a multi-scale deep feature fusion intelligent fault diagnosis method based on information entropy.First,a normal autoencoder,denoising autoencoder,sparse autoencoder,and contractive autoencoder are used in parallel to construct a multi-scale deep neural network feature extraction structure.A deep feature fusion strategy based on information entropy is proposed to obtain low-dimensional features and ensure the robustness of the model and the quality of deep features.Finally,the advantage of the deep belief network probability model is used as the fault classifier to identify the faults.The effectiveness of the proposed method was verified by a gearbox test-bed.Experimental results show that,compared with traditional and existing intelligent fault diagnosis methods,the proposed method can obtain representative information and features from the raw data with higher classification accuracy.
文摘in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.
文摘Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.
文摘This paper studied on the clustering problem for intrusion detection with the theory of information entropy, it was put forward that the clustering problem for exact intrusion detection based on information entropy is NP complete, therefore, the heuristic algorithm to solve the clustering problem for intrusion detection was designed, this algorithm has the characteristic of incremental development, it can deal with the database with large connection records from the internet.
基金Project supported by the National Natural Science Foundation of China(Grant No.11102132)
文摘This paper deals with the time evolution of information entropy for a stochastic system with double singularities driven by quasimonochromatic noise. The dimension of the Fokker Planck equation is reduced by the linear transfor- mation. The exact expression of the time dependence of information entropy is obtained based on the definition of Shannon's information entropy. The relationships between the properties of dissipative parameters, system singularity strength parameter, quasimonochromatic noise, and their effects on information entropy are discussed.
文摘Ship type identification is an important part of electronic reconnaissance. However, in the existing methods, such as statistical-based methods and fuzzy-mathematics-based methods, the information acquired by the passive sensor is not fully utilized, and there is a certain ambiguity in the assignment relationship of the emitters-ship. They can’t conclude the accurate and reliable assignment relationship of the emitters-ship. Therefore, this paper proposes a comprehensive correlation discriminant method to obtain a more reliable and comprehensive emitters-ship assignment, and then uses information entropy method to identify the type of the target ship on the basis of this association and assign the credibility. The simulation results show that this algorithm can effectively solve the problem of target ship type identification using the information of multi-passive sensors.
文摘A novel outlier recognition method in surveying data is presented based on Shannon information entropy. The probability distribution of surveying data does not need to be known or hypothesized in this method, and it is not only accurate but also convenient to calculate in this method compared with statistical recognition method.
文摘Under minimum squared error (MSE) rule, discrete K L transform (DKLT) was given. The 2nd information function, the 2nd information entropy and geometry entropy under DKLT were proposed, by which information characteristics of DKLT were metricized. Two new concepts of information rate (IR) and accumulated information rate (AIR) were proposed by which the degree of information feature compression of DKLT was illustrated.
文摘Computer-aided detection and diagnosis (CAD) systems are increasingly being used as an aid by clinicians for detection and interpretation of diseases. In general, a CAD system employs a classifier to detect or distinguish between abnormal and normal tissues on images. In the phase of classification, a set of image features and/or texture features extracted from the images are commonly used. In this article, we investigated the characteristic of the output entropy of an image and demonstrated the usefulness of the output entropy acting as a texture feature in CAD systems. In order to validate the effectiveness and superiority of the output-entropy-based texture feature, two well-known texture features, i.e., mean and standard deviation were used for comparison. The database used in this study comprised 50 CT images obtained from 10 patients with pulmonary nodules, and 50 CT images obtained from 5 normal subjects. We used a support vector machine for classification. A leave-one-out method was employed for training and classification. Three combinations of texture features, i.e., mean and entropy, standard deviation and entropy, and standard deviation and mean were used as the inputs to the classifier. Three different regions of interest (ROI) sizes, i.e., 11 × 11, 9 × 9 and 7 × 7 pixels from the database were selected for computation of the feature values. Our experimental results show that the combination of entropy and standard deviation is significantly better than both the combination of mean and entropy and that of standard deviation and mean in the case of the ROI size of 11 × 11 pixels (p < 0.05). These results suggest that information entropy of an image can be used as an effective feature for CAD applications.
基金The paper is supported by the 863 Program of China under Grant No 2006AA04A110
文摘There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.
基金This paper is supported by National Natural Science Foundation of China under Grant No.50105004 and Naval Youth Science Foundation of China under Grant No.04-Equipment Office-236.
文摘This paper presents a method of rotating machinery fault diagnosis based on the close degree of information entropy. In the view of the information entropy, we introduce four information entropy features of the rotating machinery, which describe the vibration condition of the machinery. The four features are, respectively, denominated as singular spectrum entropy, power spectrum entropy, wavelet space state feature entropy and wavelet power spectrum entropy. The value scopes of the four information entropy features of the rotating machinery in some typical fault conditions are gained by experiments, which can be acted as the standard features of fault diagnosis. According to the principle of the shorter distance between the more similar models, the decision-making method based on the close degree of information entropy is put forward to deal with the recognition of fault patterns. We demonstrate the effectiveness of this approach in an instance involving the fault pattern recognition of some rotating machinery.