This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and anoth...This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and another based on the timing features of a single sample. These MFs lead to two types of information components (spatial and temporal) which are concatenated and modified to produce different feature types. Two Component Information Set (TCIS) is proposed for keystroke dynamics based user authentication. The keystroke features are converted into TCIS features which are then classified by SVM, Random Forest and proposed Convex Entropy Based Hanman Classifier. The TCIS features are capable of representing the spatial and temporal uncertainties. The performance of the proposed features is tested on CMU benchmark dataset in terms of error rates (FAR, FRR, EER) and accuracy of the features. In addition, the proposed features are also tested on Android Touch screen based Mobile Keystroke Dataset. The TCIS features improve the performance and give lower error rates and better accuracy than that of the existing features in literature.展开更多
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ...Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.展开更多
Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specifica...Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).展开更多
The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. ...The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. Hence, a truthful revelation by the sender of his information does not necessarily imply that the signal he sends is correct. Also, the receiver can take a correct action even if the sender transmits an incorrect signal. The payoffs of the two players depend on their combined actions. Perfect Bayesian Equilibria which can result from different degrees of noise is analysed. The Bayesian updating of probabilities is explained. The fixed point theorem which makes the connection with the idea of rational expectations in economics is calculated. Given a number of equilibria, we comment on the most credible one on the basis of the implied payoffs for both players. The equilibrium signals are an example of the formation of a language convention discussed by D. Lewis.展开更多
A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was le...A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was less than 5.6 μm and its repetitive positioning accuracy was less than 1.8 μm; the vibration amplitude of ultrasonic grinding system was uniform and stable, and the EDM system worked well and stably.A smooth surface of K9 optical glass component was achieved by the grinding method.展开更多
The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary ...The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary structure. So development of an accurate prediction method ofβ-turn types is very necessary. In this paper, we used the composite vector with position conservation scoring function, increment of diversity and predictive secondary structure information as the input parameter of support vector machine algorithm for predicting theβ-turn types in the database of 426 protein chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, II’, IV, VI and nonturn respectively, which is better than other prediction.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
The development of new aeronautics and astronautics technologies has been constrained by strict mathematical rules for data processing among the diverse methods used to obtain spatial information.The acquisition of sp...The development of new aeronautics and astronautics technologies has been constrained by strict mathematical rules for data processing among the diverse methods used to obtain spatial information.The acquisition of spatial information has been affected by various choices including the applied technologies(e.g.,push broom sensors),techniques(e.g.,zoom imaging),and equipment settings(e.g.,swing angle,aerial platform attitude,camera angle)in terms of the convergence,efficiency,and accuracy of the data.Based on the principle of the bionic machine parallax angle and pyramidal projection of the aerial space platform to the surface,this study explored solutions for high-resolution image sparsity,ill-conditioned singularity,and non-convergence by building a set of mathematical models to process the polar coordinates of the parallax angular vector.This study also formed a polar information theory for initial spatial information.This method improved the ranges of accuracy,efficiency,and anti-interference in close-range photogrammetry and the free net bundle adjustment model by several orders of magnitude.The open source code was made globally available more than 3 years ago,and has received positive reactions.The method’s effectiveness was verified using aerophotogrammetry and absolute network adjustment model experiments,and its performance was better than that of the Cartesian coordinate processing method.Finally,the higher-order solution characteristics of various applications and spaceflight platforms were provided,which are expected to provide a foundation for construction of a new polar coordinate system for aerospace multi-scale all-attitude spatial information acquisition,organization,management,storage,processing,and application.展开更多
There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fa...There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.展开更多
In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framewor...In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.展开更多
The application of controlled levels of negative pressure on to a wound has been shown to accelerate evacuation of dead cells, debris and fluid which eventually encourages wound healing in a verity of surgical wounds....The application of controlled levels of negative pressure on to a wound has been shown to accelerate evacuation of dead cells, debris and fluid which eventually encourages wound healing in a verity of surgical wounds. Vacuum Assisted Closure (V.A.C.) therapy—KCI Medical Limited, the terminology by which this is widely known, became popular, especially among the plastic surgery professionals in America and soon gained recognition worldwide. It is now widely used in the UK to manage and assist healing in a wide variety of wounds. Although KCI’s V.A.C. machines were the only ones on the market for a number of years, several wound management companies have now brought out their own machines and these are now known collectively as topical negative pressure therapy (TNPT). Traditional TNPT is often considered a relatively costly procedure. It is often used in patients with large wounds to facilitate dressing management and promote rapid cleaning and granulation. This may also allow them to be discharged to the community when they would otherwise remain inpatients, thereby saving bed days. Capital purchase of the machines is expensive and hospitals often rent or lease them on a short or long term basis. This can lead to difficulties in arranging the finances for discharge to the community. Subsequent dressing changes (recommended every 48 - 72 hrs) also incur high costs and involvement of the trained medical or nursing staff. As we all know;“Need is the mother of invention”. The disposable TNPT machine (V.A.C. ViaTM KCI Medical Ltd) has been introduced to help to solve these problems. It is a single use machine, inclusive of a dressing and canister and available off the shelf. It is very cost effective, easy to use and is used for small to moderate sized wounds. Senior author is using this machine which excellent results and illustrated the use of this machine with pictures in this paper.展开更多
When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high qu...When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high quality translation results,there are still mistranslations and omissions in the translation of key information of long sentences.On the other hand,the most important part in traditional translation tasks is the translation of key information.In the translation results,as long as the key information is translated accurately and completely,even if other parts of the results are translated incorrect,the final translation results’quality can still be guaranteed.In order to solve the problem of mistranslation and missed translation effectively,and improve the accuracy and completeness of long sentence translation in machine translation,this paper proposes a key information fused neural machine translation model based on Transformer.The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder.After the same encoding as the source language text,it is fused with the output of the source language text encoded by the encoder,then the key information is processed and input into the decoder.With incorporating keyword information from the source language sentence,the model’s performance in the task of translating long sentences is very reliable.In order to verify the effectiveness of the method of fusion of key information proposed in this paper,a series of experiments were carried out on the verification set.The experimental results show that the Bilingual Evaluation Understudy(BLEU)score of the model proposed in this paper on theWorkshop on Machine Translation(WMT)2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset.The experimental results show the advantages of the model proposed in this paper.展开更多
Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, thes...Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, these only focus on accuracy which is based on the leave-one-out cross validation procedure. Information-retrieval-related performance measures are always neglected in a kernel learning methodology. In this paper, we have proposed a set of information-retrieval-oriented performance estimators for SVMs, which are based on the span bound of the leave-one-out procedure. Experiments have proven that our proposed estimators are both effective and stable.展开更多
At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems ba...At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.展开更多
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5...Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.展开更多
Weight reduction is a key driving force for materials development in aerospace industry,which leads to extensive usage of lightweight structural materials such as fiber reinforced polymer(FRP),titanium alloy,aluminum ...Weight reduction is a key driving force for materials development in aerospace industry,which leads to extensive usage of lightweight structural materials such as fiber reinforced polymer(FRP),titanium alloy,aluminum alloy,etc.Hole making is indispensable to assembling these lightweight components by riveted or bolted joints.However,hole making of FRP / metal stacks is always the most challenging task due to differences of material properties between FRP and metals.A comprehensive literature review on hole making of FRP/metal stacks in the last decade is given with a focus on four main aspects including drilling operation,drilling damages and machining parameter optimization,tool performance and wear,and developments in hole making technology.Finally,in order to ensure the precise and efficient hole making of FRP/metal stacks,an idea of low frequency vibration assisted drilling(LFVAD)FRP/metal stacks based on material removal characteristics is put forward by fully exploiting the unique advantages of LFVAD technology.展开更多
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].
文摘This paper presents keystroke dynamics based authentication system using the information set concept. Two types of membership functions (MFs) are computed: one based on the timing features of all the samples and another based on the timing features of a single sample. These MFs lead to two types of information components (spatial and temporal) which are concatenated and modified to produce different feature types. Two Component Information Set (TCIS) is proposed for keystroke dynamics based user authentication. The keystroke features are converted into TCIS features which are then classified by SVM, Random Forest and proposed Convex Entropy Based Hanman Classifier. The TCIS features are capable of representing the spatial and temporal uncertainties. The performance of the proposed features is tested on CMU benchmark dataset in terms of error rates (FAR, FRR, EER) and accuracy of the features. In addition, the proposed features are also tested on Android Touch screen based Mobile Keystroke Dataset. The TCIS features improve the performance and give lower error rates and better accuracy than that of the existing features in literature.
文摘Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively.
文摘Automatically mapping a requirement specification to design model in Software Engineering is an open complex problem. Existing methods use a complex manual process that use the knowledge from the requirement specification/modeling and the design, and try to find a good match between them. The key task done by designers is to convert a natural language based requirement specification (or corresponding UML based representation) into a predominantly computer language based design model—thus the process is very complex as there is a very large gap between our natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD) process. We believe, this is the first logical step in mapping a more complex requirement specification to design model. We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic, design structures using some well known design framework and Machine Learning algorithms for learning over time. Semantics help convert natural language based requirement specification (and associated UML representation) into high level design model followed by mapping to design structures. AI method can also be used to convert high level design structures into lower level design which then can be refined further by some manual and/or semi automated process. We emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially, for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).
文摘The paper provides an analysis of a sender-receiver sequential signaling game. The private information of the sender is transmitted with noise by a Machine, i.e. does not always correctly reflect the state of nature. Hence, a truthful revelation by the sender of his information does not necessarily imply that the signal he sends is correct. Also, the receiver can take a correct action even if the sender transmits an incorrect signal. The payoffs of the two players depend on their combined actions. Perfect Bayesian Equilibria which can result from different degrees of noise is analysed. The Bayesian updating of probabilities is explained. The fixed point theorem which makes the connection with the idea of rational expectations in economics is calculated. Given a number of equilibria, we comment on the most credible one on the basis of the implied payoffs for both players. The equilibrium signals are an example of the formation of a language convention discussed by D. Lewis.
基金Supported by the National High Technology Research and Development Program of China("863" Program,No.2009AA044204)
文摘A compound machine tool was designed, which combined rotary ultrasonic assisted grinding, electrical discharge machining(EDM) and multi-axis milling. Experimental results indicated that its positioning accuracy was less than 5.6 μm and its repetitive positioning accuracy was less than 1.8 μm; the vibration amplitude of ultrasonic grinding system was uniform and stable, and the EDM system worked well and stably.A smooth surface of K9 optical glass component was achieved by the grinding method.
文摘The structure and function of proteins are closely related, and protein structure decides its function, therefore protein structure prediction is quite important.β-turns are important components of protein secondary structure. So development of an accurate prediction method ofβ-turn types is very necessary. In this paper, we used the composite vector with position conservation scoring function, increment of diversity and predictive secondary structure information as the input parameter of support vector machine algorithm for predicting theβ-turn types in the database of 426 protein chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, II’, IV, VI and nonturn respectively, which is better than other prediction.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
基金The National Key Research and Development of China(2017YFB0503004)The National Natural Science Foundation of China(41571432,61101157,41050110441)+1 种基金The Chinese National Programs for High Technology Research and Development(2007AA09Z201)The National Key Technology Research and Development Program of The Ministry of Science and Technology of China(2011BAH12B06).
文摘The development of new aeronautics and astronautics technologies has been constrained by strict mathematical rules for data processing among the diverse methods used to obtain spatial information.The acquisition of spatial information has been affected by various choices including the applied technologies(e.g.,push broom sensors),techniques(e.g.,zoom imaging),and equipment settings(e.g.,swing angle,aerial platform attitude,camera angle)in terms of the convergence,efficiency,and accuracy of the data.Based on the principle of the bionic machine parallax angle and pyramidal projection of the aerial space platform to the surface,this study explored solutions for high-resolution image sparsity,ill-conditioned singularity,and non-convergence by building a set of mathematical models to process the polar coordinates of the parallax angular vector.This study also formed a polar information theory for initial spatial information.This method improved the ranges of accuracy,efficiency,and anti-interference in close-range photogrammetry and the free net bundle adjustment model by several orders of magnitude.The open source code was made globally available more than 3 years ago,and has received positive reactions.The method’s effectiveness was verified using aerophotogrammetry and absolute network adjustment model experiments,and its performance was better than that of the Cartesian coordinate processing method.Finally,the higher-order solution characteristics of various applications and spaceflight platforms were provided,which are expected to provide a foundation for construction of a new polar coordinate system for aerospace multi-scale all-attitude spatial information acquisition,organization,management,storage,processing,and application.
基金The paper is supported by the 863 Program of China under Grant No 2006AA04A110
文摘There exists some discord or contradiction of information during the process of fault diagnosis for rotary machine. But the traditional methods used in fault diagnosis can not dispose of the information. A model of fault diagnosis for a rotary machine based on information entropy theory and rough set theory is presented in this paper. The model has clear mathematical definition and can dispose both complete unification information and complete inconsistent information of vibration faults. By using the model, decision rules of six typical vibration faults of a steam turbine and electric generating set are deduced from experiment samples. Finally, the decision rules are validated by selected samples and good identification results are acquired.
文摘In view of the lack of research on the information model of tufting carpet machine in China,an information modeling method based on Object Linking and Embedding for Process Control Unified Architecture(OPC UA)framework was proposed to solve the problem of“information island”caused by the differentiated data interface between heterogeneous equipment and system in tufting carpet machine workshop.This paper established an information model of tufting carpet machine based on analyzing the system architecture,workshop equipment composition and information flow of the workshop,combined with the OPC UA information modeling specification.Subsequently,the OPC UA protocol is used to instantiate and map the information model,and the OPC UA server is developed.Finally,the practicability of tufting carpet machine information model under the OPC UA framework and the feasibility of realizing the information interconnection of heterogeneous devices in the tufting carpet machine digital workshop are verified.On this basis,the cloud and remote access to the underlying device data are realized.The application of this information model and information integration scheme in actual production explores and practices the application of OPC UA technology in the digital workshop of tufting carpet machine.
文摘The application of controlled levels of negative pressure on to a wound has been shown to accelerate evacuation of dead cells, debris and fluid which eventually encourages wound healing in a verity of surgical wounds. Vacuum Assisted Closure (V.A.C.) therapy—KCI Medical Limited, the terminology by which this is widely known, became popular, especially among the plastic surgery professionals in America and soon gained recognition worldwide. It is now widely used in the UK to manage and assist healing in a wide variety of wounds. Although KCI’s V.A.C. machines were the only ones on the market for a number of years, several wound management companies have now brought out their own machines and these are now known collectively as topical negative pressure therapy (TNPT). Traditional TNPT is often considered a relatively costly procedure. It is often used in patients with large wounds to facilitate dressing management and promote rapid cleaning and granulation. This may also allow them to be discharged to the community when they would otherwise remain inpatients, thereby saving bed days. Capital purchase of the machines is expensive and hospitals often rent or lease them on a short or long term basis. This can lead to difficulties in arranging the finances for discharge to the community. Subsequent dressing changes (recommended every 48 - 72 hrs) also incur high costs and involvement of the trained medical or nursing staff. As we all know;“Need is the mother of invention”. The disposable TNPT machine (V.A.C. ViaTM KCI Medical Ltd) has been introduced to help to solve these problems. It is a single use machine, inclusive of a dressing and canister and available off the shelf. It is very cost effective, easy to use and is used for small to moderate sized wounds. Senior author is using this machine which excellent results and illustrated the use of this machine with pictures in this paper.
基金Major Science and Technology Project of Sichuan Province[No.2022YFG0315,2022YFG0174]Sichuan Gas Turbine Research Institute stability support project of China Aero Engine Group Co.,Ltd.[No.GJCZ-2019-71].
文摘When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high quality translation results,there are still mistranslations and omissions in the translation of key information of long sentences.On the other hand,the most important part in traditional translation tasks is the translation of key information.In the translation results,as long as the key information is translated accurately and completely,even if other parts of the results are translated incorrect,the final translation results’quality can still be guaranteed.In order to solve the problem of mistranslation and missed translation effectively,and improve the accuracy and completeness of long sentence translation in machine translation,this paper proposes a key information fused neural machine translation model based on Transformer.The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder.After the same encoding as the source language text,it is fused with the output of the source language text encoded by the encoder,then the key information is processed and input into the decoder.With incorporating keyword information from the source language sentence,the model’s performance in the task of translating long sentences is very reliable.In order to verify the effectiveness of the method of fusion of key information proposed in this paper,a series of experiments were carried out on the verification set.The experimental results show that the Bilingual Evaluation Understudy(BLEU)score of the model proposed in this paper on theWorkshop on Machine Translation(WMT)2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset.The experimental results show the advantages of the model proposed in this paper.
文摘Support vector machines have met with significant success in the information retrieval field, especially in handling text classification tasks. Although various performance estimators for SVMs have been proposed, these only focus on accuracy which is based on the leave-one-out cross validation procedure. Information-retrieval-related performance measures are always neglected in a kernel learning methodology. In this paper, we have proposed a set of information-retrieval-oriented performance estimators for SVMs, which are based on the span bound of the leave-one-out procedure. Experiments have proven that our proposed estimators are both effective and stable.
文摘At present,the database cache model of power information system has problems such as slow running speed and low database hit rate.To this end,this paper proposes a database cache model for power information systems based on deep machine learning.The caching model includes program caching,Structured Query Language(SQL)preprocessing,and core caching modules.Among them,the method to improve the efficiency of the statement is to adjust operations such as multi-table joins and replacement keywords in the SQL optimizer.Build predictive models using boosted regression trees in the core caching module.Generate a series of regression tree models using machine learning algorithms.Analyze the resource occupancy rate in the power information system to dynamically adjust the voting selection of the regression tree.At the same time,the voting threshold of the prediction model is dynamically adjusted.By analogy,the cache model is re-initialized.The experimental results show that the model has a good cache hit rate and cache efficiency,and can improve the data cache performance of the power information system.It has a high hit rate and short delay time,and always maintains a good hit rate even under different computer memory;at the same time,it only occupies less space and less CPU during actual operation,which is beneficial to power The information system operates efficiently and quickly.
文摘Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best.
基金supported by the National Natural Science Foundation of China (No. 51875284)
文摘Weight reduction is a key driving force for materials development in aerospace industry,which leads to extensive usage of lightweight structural materials such as fiber reinforced polymer(FRP),titanium alloy,aluminum alloy,etc.Hole making is indispensable to assembling these lightweight components by riveted or bolted joints.However,hole making of FRP / metal stacks is always the most challenging task due to differences of material properties between FRP and metals.A comprehensive literature review on hole making of FRP/metal stacks in the last decade is given with a focus on four main aspects including drilling operation,drilling damages and machining parameter optimization,tool performance and wear,and developments in hole making technology.Finally,in order to ensure the precise and efficient hole making of FRP/metal stacks,an idea of low frequency vibration assisted drilling(LFVAD)FRP/metal stacks based on material removal characteristics is put forward by fully exploiting the unique advantages of LFVAD technology.