Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.C...Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.展开更多
The JTC technology deals with the problem of target tracking and target classification simultaneously within a unified framework.The fundamental idea of the JTC technology is that by taking advantage of the mutual exc...The JTC technology deals with the problem of target tracking and target classification simultaneously within a unified framework.The fundamental idea of the JTC technology is that by taking advantage of the mutual exchange of useful information between the tracker and classifier,significant improvements in performance of both target tracking and target classification can be expected.The principle of JTC technology is introduced.The existing JTC technologies are broadly categorized into two classes,i.e.,point-target-motion-model-based JTC and rigid-target-motion-based JTC,which are then compared in detail.The advance of the JTC technology is surveyed with comments on some related literatures.Finally,some opening topics of the JTC technology are discussed.展开更多
Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in ...Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.展开更多
A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separat...A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.展开更多
Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,...Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution.In order to compensate for the low detection accuracy,incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR,in this paper,an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles.By employing the Unscented Kalman Filter,Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle.Finally,the real vehicle test under various driving environment scenarios is carried out.The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy.Compared with a single sensor,it has obvious advantages and can improve the intelligence level of autonomous cars.展开更多
A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. ...A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. Computer simulation results show that the tracking system greatly reduces the tracking errors compared with trackers without attitude measurements, and achieves small miss distances even when the target has a big maneuver.展开更多
The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism o...The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism of track loss analytically. With nearest-neighbor association algorithm. The paper we studies the fused tracking performance parameters, such as mean time to lose fused track and the cumulative probability of lost fused track versus the normalized clutter density, for track continuation and track initiation, respectively. A comparison of the results obtained with the case of a single sensor is presented. These results show that the fused tracks of multisensor reduce the possibility of track loss and improve the tracking performance. The analysis is of great importance for further understanding the action of data fusion.展开更多
Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accura...Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.展开更多
针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构...针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构的多传感器集中式融合方式对目标进行跟踪,利用跟踪过程中的预测协方差与预定门限进行比较控制雷达辐射,并分析了红外、ESM不同间歇时间、不同控制门限与雷达辐射时间的相对关系。研究结论有助于提高作战飞机的抗侦察和抗干扰能力,从而提升整体的生存能力。展开更多
基金Supported by the National Natural Science Foundation of China(No.61300214)the National Natural Science Foundation of Henan Province(No.132300410148)+1 种基金the Post-doctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher ofHenan Province Universities(No.2013GGJS-026)
文摘Aiming at the effective realization of particle filter for maneuvering target tracking in multi-sensor measurements,a novel multi-sensor multiple model particle filtering algorithm with correlated noises is proposed.Combined with the kinetic evolution equation of target state,a multi-sensor multiple model particle filter is firstly constructed,which is also used as the basic framework of a new algorithm.In the new algorithm,in order to weaken the adverse influence from random measurement noises in the measuring process of particle weight,a weight optimization strategy is introduced to improve the reliability and stability of particle weight.In addition,considering the correlated noise existing in the practical engineering,a decoupling method of correlated noise is given by the rearrangement and transformation of the state transition equation and measurement equation.Since the weight optimization strategy and noise decoupling method adopt respectively the center fusion structure and the off-line way,it improves the adverse effect effectively on computational complexity for increasing state dimension and sensor number.Finally,the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.
文摘The JTC technology deals with the problem of target tracking and target classification simultaneously within a unified framework.The fundamental idea of the JTC technology is that by taking advantage of the mutual exchange of useful information between the tracker and classifier,significant improvements in performance of both target tracking and target classification can be expected.The principle of JTC technology is introduced.The existing JTC technologies are broadly categorized into two classes,i.e.,point-target-motion-model-based JTC and rigid-target-motion-based JTC,which are then compared in detail.The advance of the JTC technology is surveyed with comments on some related literatures.Finally,some opening topics of the JTC technology are discussed.
基金University Doctor Subject Foundation of China (20060699024)
文摘Multi-laser-target tracking is an important subject in the field of signal processing of laser warners. A clustering method is applied to the measurement of laser warner, and the space-time fusion for measurements in the same cluster is accomplished. Real-time tracking of multi-laser-target and real-time picking of multi-laser-signal are introduced using data fusion of the measurements. A prototype device of the algorithm is built up. The results of experiments show that the algorithm is very effective.
基金supported by the National Natural Science Foundation of China (60574022).
文摘A new distributed fusion method of radar/infrared (IR) tracking system based on separation and combination of the measurements is proposed by analyzing the influence of rate measurement. The rate information separated from the radar measurements together with measurements of IR form a pseudo vector of IR, and the corresponding filter is designed. The results indicate that the method not only makes a great improvement to the local tracker's performance, but also improves the global tracking precision efficiently.
基金Supported by National Natural Science Foundation of China(Grant Nos.U20A20333,61906076,51875255,U1764257,U1762264),Jiangsu Provincial Natural Science Foundation of China(Grant Nos.BK20180100,BK20190853)Six Talent Peaks Project of Jiangsu Province(Grant No.2018-TD-GDZB-022)+1 种基金China Postdoctoral Science Foundation(Grant No.2020T130258)Jiangsu Provincial Key Research and Development Program of China(Grant No.BE2020083-2).
文摘Radar and LiDAR are two environmental sensors commonly used in autonomous vehicles,Lidars are accurate in determining objects’positions but significantly less accurate as Radars on measuring their velocities.However,Radars relative to Lidars are more accurate on measuring objects velocities but less accurate on determining their positions as they have a lower spatial resolution.In order to compensate for the low detection accuracy,incomplete target attributes and poor environmental adaptability of single sensors such as Radar and LiDAR,in this paper,an effective method for high-precision detection and tracking of surrounding targets of autonomous vehicles.By employing the Unscented Kalman Filter,Radar and LiDAR information is effectively fused to achieve high-precision detection of the position and speed information of targets around the autonomous vehicle.Finally,the real vehicle test under various driving environment scenarios is carried out.The experimental results show that the proposed sensor fusion method can effectively detect and track the vehicle peripheral targets with high accuracy.Compared with a single sensor,it has obvious advantages and can improve the intelligence level of autonomous cars.
文摘A new 3 D fusion tracking system for an anti air missile homing system based on radar and imaging sensor is developed. The attitude measurements from the imaging sensor are used to improve the tracking performance. Computer simulation results show that the tracking system greatly reduces the tracking errors compared with trackers without attitude measurements, and achieves small miss distances even when the target has a big maneuver.
文摘The paper analyses the improvement of track loss in clutter with multisensor data fusion.By a determination of the transition probability density function for the fusion prediction error, one can study the mechanism of track loss analytically. With nearest-neighbor association algorithm. The paper we studies the fused tracking performance parameters, such as mean time to lose fused track and the cumulative probability of lost fused track versus the normalized clutter density, for track continuation and track initiation, respectively. A comparison of the results obtained with the case of a single sensor is presented. These results show that the fused tracks of multisensor reduce the possibility of track loss and improve the tracking performance. The analysis is of great importance for further understanding the action of data fusion.
基金Supported by the Special Funds for Major State Basic Research Program of P.R.China(2001CB309403)
文摘Maneuvering targets tracking is a fundamental task in intelligent vehicle research. Thispaper focuses on the problem of fusion between radar and image sensors in targets tracking. Inorder to improve positioning accuracy and narrow down the image working area, a novel methodthat integrates radar filter with image intensity is proposed to establish an adaptive vision window.A weighted Hausdor? distance is introduced to define the functional relationship between image andmodel projection, and a modified simulated annealing algorithm is used to find optimum orientationparameter. Furthermore, the global state is estimated, which refers to the distributed data fusionalgorithm. Experiment results show that our method is accurate.
文摘针对辐射限制下的目标跟踪问题,提出了一种机载雷达、红外传感器(infrared search and track,IRST)、电子支援措施(electronic support measure,ESM)协同跟踪与管理的方法。针对雷达、红外、ESM量测时间不一致的特点,采用顺序处理结构的多传感器集中式融合方式对目标进行跟踪,利用跟踪过程中的预测协方差与预定门限进行比较控制雷达辐射,并分析了红外、ESM不同间歇时间、不同控制门限与雷达辐射时间的相对关系。研究结论有助于提高作战飞机的抗侦察和抗干扰能力,从而提升整体的生存能力。