The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the a...The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.展开更多
As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for...As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.展开更多
Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to ...Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.展开更多
The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of produ...The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of products by reducing design and construction defects,risks to the health and safety of workers,and reduce overall project cost and delivery time.The BIM has capabilities,but it is still undiscovered and unable to exploit the full scale of its benefits in the Architectural Engineering and Construction(AEC)industry.There is a trend to adopt the BIM level 1,which is limited to 2D and only in a few cases 3D models uses in the design and construction of residential and commercial buildings,particularly in Nepal.Hence,this paper focuses on providing insight into the BIM benefits and identifies the potential barriers while adopting BIM Level 3 in Nepal.This was accomplished by developing a 4DBIM model of a multi-story residential building in Nepal and conducting the industry survey via focus group with the AEC professionals based on the developed 4DBIM model.A comprehensive literature review was conducted and presented the findings of the BIM benefits and barriers while adopting BIM.The study found that commercial and governmental projects can immediately be adopted BIM technology.It is concluded that the unavailability of skilled BIM users and the lack of proper policies for BIM adoption are key barriers in Nepal.Hence,the new policy is required to achieve and exploit the full scale of the BIM benefits and improve the project delivery in terms of quality,cost and time including the health and safety of workers and the sustainability of the AEC industry.展开更多
为了解决水利水电项目建设中任务量大、专业技能多、操作难度高、环境干扰严重的问题,往往要进行多次论证和优化工程步骤,保证施工质量。采用BIM(Building Information Modeling)+GIS(Geographic Information System)技术对水利建筑模...为了解决水利水电项目建设中任务量大、专业技能多、操作难度高、环境干扰严重的问题,往往要进行多次论证和优化工程步骤,保证施工质量。采用BIM(Building Information Modeling)+GIS(Geographic Information System)技术对水利建筑模型进行优化,并对建筑进行外观设计,为模型的搭建提供坚实基础。结果表明,在水利水电项目建设过程中,以BIM+GIS技术模型为基础可快速模拟待查找的工程进度,有利于管控工程资金和监督工程实施进度,可以大幅度提升水利项目的信息化程度。展开更多
文摘The whole-process project cost management based on building information modeling(BIM)is a new management method,aiming to realize the comprehensive optimization and improvement of project cost management through the application of BIM technology.This paper summarizes and analyzes the whole-process project cost management based on BIM,aiming to explore its application and development prospects in the construction industry.Firstly,this paper introduces the role and advantages of BIM technology in engineering cost management,including information integration,data sharing,and collaborative work.Secondly,the paper analyzes the key technologies and methods of the whole-process project cost management based on BIM,including model construction,data management,and cost control.In addition,the paper also discusses the challenges and limitations of the whole-process BIM project cost management,such as the inconsistency of technical standards,personnel training,and consciousness change.Finally,the paper summarizes the advantages and development prospects of the whole-process project cost management based on BIM and puts forward the direction and suggestions for future research.Through the research of this paper,it can provide a reference for construction cost management and promote innovation and development in the construction industry.
基金supported by the National Natural Science Foundation of China(Grant Nos.62102240,62071283)the China Postdoctoral Science Foundation(Grant No.2020M683421)the Key R&D Program of Shaanxi Province(Grant No.2020ZDLGY10-05).
文摘As an ingenious convergence between the Internet of Things and social networks,the Social Internet of Things(SIoT)can provide effective and intelligent information services and has become one of the main platforms for people to spread and share information.Nevertheless,SIoT is characterized by high openness and autonomy,multiple kinds of information can spread rapidly,freely and cooperatively in SIoT,which makes it challenging to accurately reveal the characteristics of the information diffusion process and effectively control its diffusion.To this end,with the aim of exploring multi-information cooperative diffusion processes in SIoT,we first develop a dynamics model for multi-information cooperative diffusion based on the system dynamics theory in this paper.Subsequently,the characteristics and laws of the dynamical evolution process of multi-information cooperative diffusion are theoretically investigated,and the diffusion trend is predicted.On this basis,to further control the multi-information cooperative diffusion process efficiently,we propose two control strategies for information diffusion with control objectives,develop an optimal control system for the multi-information cooperative diffusion process,and propose the corresponding optimal control method.The optimal solution distribution of the control strategy satisfying the control system constraints and the control budget constraints is solved using the optimal control theory.Finally,extensive simulation experiments based on real dataset from Twitter validate the correctness and effectiveness of the proposed model,strategy and method.
文摘Life Cycle Cost Analysis (LCCA) provides a systematic approach to assess the total cost associated with owning, operating, and maintaining assets throughout their entire life. BIM empowers architects and designers to perform real-time evaluations to explore various design options. However, when integrated with LCCA, BIM provides a comprehensive economic perspective that helps stakeholders understand the long-term financial implications of design decisions. This study presents a methodology for developing a model that seamlessly integrates BIM and LCCA during the conceptual design stage of buildings. This integration allows for a comprehensive evaluation and analysis of the design process, ensuring that the development aligns with the principles of low carbon emissions by employing modular construction, 3D concrete printing methods, and different building design alternatives. The model considers the initial construction costs in addition to all the long-term operational, maintenance, and salvage values. It combines various tools and data through different modules, including energy analysis, Life Cycle Assessment (LCA), and Life Cycle Cost Analysis (LCCA) to execute a comprehensive assessment of the financial implications of a specific design option throughout the lifecycle of building projects. The development of the said model and its implementation involves the creation of a new plug-in for the BIM tool (i.e., Autodesk Revit) to enhance its functionalities and capabilities in forecasting the life-cycle costs of buildings in addition to generating associated cash flows, creating scenarios, and sensitivity analyses in an automatic manner. This model empowers designers to evaluate and justify their initial investments while designing and selecting potential construction methods for buildings, and enabling stakeholders to make informed decisions by assessing different design alternatives based on long-term financial considerations during the early stages of design.
文摘The construction industry needs modern construction methodology and technology to improve sustainability and production performance.Building Information Modelling(BIM)technology supports improving the quality of products by reducing design and construction defects,risks to the health and safety of workers,and reduce overall project cost and delivery time.The BIM has capabilities,but it is still undiscovered and unable to exploit the full scale of its benefits in the Architectural Engineering and Construction(AEC)industry.There is a trend to adopt the BIM level 1,which is limited to 2D and only in a few cases 3D models uses in the design and construction of residential and commercial buildings,particularly in Nepal.Hence,this paper focuses on providing insight into the BIM benefits and identifies the potential barriers while adopting BIM Level 3 in Nepal.This was accomplished by developing a 4DBIM model of a multi-story residential building in Nepal and conducting the industry survey via focus group with the AEC professionals based on the developed 4DBIM model.A comprehensive literature review was conducted and presented the findings of the BIM benefits and barriers while adopting BIM.The study found that commercial and governmental projects can immediately be adopted BIM technology.It is concluded that the unavailability of skilled BIM users and the lack of proper policies for BIM adoption are key barriers in Nepal.Hence,the new policy is required to achieve and exploit the full scale of the BIM benefits and improve the project delivery in terms of quality,cost and time including the health and safety of workers and the sustainability of the AEC industry.
文摘为了解决水利水电项目建设中任务量大、专业技能多、操作难度高、环境干扰严重的问题,往往要进行多次论证和优化工程步骤,保证施工质量。采用BIM(Building Information Modeling)+GIS(Geographic Information System)技术对水利建筑模型进行优化,并对建筑进行外观设计,为模型的搭建提供坚实基础。结果表明,在水利水电项目建设过程中,以BIM+GIS技术模型为基础可快速模拟待查找的工程进度,有利于管控工程资金和监督工程实施进度,可以大幅度提升水利项目的信息化程度。