The Q-ary low-density parity-check(LDPC) coded high order partial response continuous phase modulation(PR-CPM) with double iterative loops is investigated. This scheme shows significant improvements in power and b...The Q-ary low-density parity-check(LDPC) coded high order partial response continuous phase modulation(PR-CPM) with double iterative loops is investigated. This scheme shows significant improvements in power and bandwidth efficiency, but at the expense of long iterative decoding delay and computational complexity induced by the improper match between the demodulator and the decoder. To address this issue, the convergence behavior of Q-ary LDPC coded CPM is investigated for the Q=2 and Q〉2 cases, and an optimized design method based on the extrinsic information transfer chart is proposed to improve the systematic iterative efficiency. Simulation results demonstrate that the proposed method can achieve a perfect tradeoff between iterative decoding delay and bit error rate performance to satisfy real-time applications.展开更多
Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensivel...Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensively explored,the orthogonal matrix of polarization combinations(OMPC)is a novel,relatively unexplored concept.Herein,we propose a method for constructing OMPCs of any dimension encompassing 4n(where n is 1,2,4,8,…)mutually orthogonal 2ncomponent polarization combinations.In the field of holography,the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing,offering considerable enhancements in data storage capacity and security.A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording.Despite consolidating all information into a single position within the material,we effectively avoided extraneous crosstalk during the reconstruction process.Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave.This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information,harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.展开更多
基金supported by the National Natural Science Foundation of China(61403093)the Science Foundation of Heilongjiang Province of China for Returned Scholars(LC2013C22)the Assisted Project by Heilongjiang Province of China Postdoctoral Funds for Scientific Research Initiation(LBH-Q14048)
文摘The Q-ary low-density parity-check(LDPC) coded high order partial response continuous phase modulation(PR-CPM) with double iterative loops is investigated. This scheme shows significant improvements in power and bandwidth efficiency, but at the expense of long iterative decoding delay and computational complexity induced by the improper match between the demodulator and the decoder. To address this issue, the convergence behavior of Q-ary LDPC coded CPM is investigated for the Q=2 and Q〉2 cases, and an optimized design method based on the extrinsic information transfer chart is proposed to improve the systematic iterative efficiency. Simulation results demonstrate that the proposed method can achieve a perfect tradeoff between iterative decoding delay and bit error rate performance to satisfy real-time applications.
基金financial supports from National Key Research and Development Program of China(2018YFA0701800)Fujian Province Major Science and Technology Program(2020HZ01012)+1 种基金National Natural Science Foundation of China(NSFC)(U22A2080)China Scholarship Council(202109107007).
文摘Orthogonal matrices have become a vital means for coding and signal processing owing to their unique distributional properties.Although orthogonal matrices based on amplitude or phase combinations have been extensively explored,the orthogonal matrix of polarization combinations(OMPC)is a novel,relatively unexplored concept.Herein,we propose a method for constructing OMPCs of any dimension encompassing 4n(where n is 1,2,4,8,…)mutually orthogonal 2ncomponent polarization combinations.In the field of holography,the integration of polarization multiplexing techniques with polarization-sensitive materials is expected to emerge as a groundbreaking approach for multichannel hologram multiplexing,offering considerable enhancements in data storage capacity and security.A multidimensional OMPC enables the realization of multichannel multiplexing and dynamical modulation of information in polarization holographic recording.Despite consolidating all information into a single position within the material,we effectively avoided extraneous crosstalk during the reconstruction process.Our results show that achieving four distinct holographic images individually and simultaneously depends on the polarization combination represented by the incident wave.This discovery opens up a new avenue for achieving highly holographic information storage and dynamically displayed information,harnessing the potential of OMPC to expand the heretofore limited dimensionality of orthogonal polarization.