Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncer...Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncertainty, a quantum uncertain model is proposed to simulate a quantum information system under uncertain environment, and to simplify the entropy measurement of quantum information system. Second, different from the classic random seed under uncertain environment which is often called as pseudo-random number, here the quantum random is employed to provide us a true random model for the entropy of quantum information system. Third, the complex interaction and entangling activity of uncertain factors of quantum information is modeled as quantum binary instead of classic binary, which can help us to evaluate the entropy of uncertain environment, to analyze the entropy divergence in quantum information system. This work presents a non-classic risk factor measurement for quantum information system and a helpful entropy measurement.展开更多
文摘Under uncertain environment, it is very difficult to measure the entropy of quantum information system, because there is no effective method to model the randomness. First, different from the traditional classic uncertainty, a quantum uncertain model is proposed to simulate a quantum information system under uncertain environment, and to simplify the entropy measurement of quantum information system. Second, different from the classic random seed under uncertain environment which is often called as pseudo-random number, here the quantum random is employed to provide us a true random model for the entropy of quantum information system. Third, the complex interaction and entangling activity of uncertain factors of quantum information is modeled as quantum binary instead of classic binary, which can help us to evaluate the entropy of uncertain environment, to analyze the entropy divergence in quantum information system. This work presents a non-classic risk factor measurement for quantum information system and a helpful entropy measurement.