Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the ...An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the total narrowband energy of all array elements,and the narrowband power is calculated by MVDR.Finally,final spatial energy spectrum can be obtained by averaging or summing all results of every narrowband frequency bin.Any prior-information about the noise or the signal is unnecessary for the proposed method in this paper.The processing gain of the proposed method compared to the conventional broadband MVDR can be obtained as long as the amplitude fluctuation of the array noise frequency spectrum is severer than that of the target signal.The validity of the method is validated by the optimal signal detection theory.Simulation and real data are used to validate the performance of the method.Analysis results show that about 4 dB processing gain compared to the general broadband MVDR can be reached by the proposed method.展开更多
An adaptive multiscale edge detection method based on region energy analysis is presented here. Region energy distributions of both sides in different edge directions are studied. Based on the analysis and on the rati...An adaptive multiscale edge detection method based on region energy analysis is presented here. Region energy distributions of both sides in different edge directions are studied. Based on the analysis and on the ratio between region energy threshold difference and region area, the adaptive multiscale edge detection rnethod is developed. The experiment result shows that the new method is effective, feasible and noise-resistant in image detection.展开更多
To solve the problem of energy efficiency of modern enterprise it is necessary to reduce energy consumption.One of the possible ways is proposed in this research.A multi-level hierarchical system for energy efficiency...To solve the problem of energy efficiency of modern enterprise it is necessary to reduce energy consumption.One of the possible ways is proposed in this research.A multi-level hierarchical system for energy efficiency management of the enterprise is designed,it is based on the modular principle providing rapid modernization.The novelty of the work is the development of new and improvement of the existing methods and models,in particular:1)models for dynamic analysis of IT tools for data acquisition and processing(DAAP)in multilevel energy management systems,which are based on Petri nets;2)method of synthesis of DAAP tools in energy efficiency management information systems(EEMIS)of the enterprise which provides a reduction in hardware and time costs from 10%to 40%;3)method of conflict-free data exchange determining the minimum memory speed for the synthesis of realtime exchanges,it reduces the cost and energy consumption;4)method of calculating the signal of postsynaptic excitation of neural elements decreases the processing time of technological data two or more times.The proposed methods,models and tools have been tested while implementing the EEMIS of the intelligent mini-greenhouse,as a result,energy efficiency has increased by 12%-25%(depending on season and peculiarities of growing plants).展开更多
The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, buildi...The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
基金Sponsored by New Century Excellent Talent Support Project (NCET-04-0545)
文摘An algorithm of broadband minimum variance distortionless response(MVDR) based on the frequency energy normalization is proposed.First,every narrowband frequency component of the broadband signal is normalized by the total narrowband energy of all array elements,and the narrowband power is calculated by MVDR.Finally,final spatial energy spectrum can be obtained by averaging or summing all results of every narrowband frequency bin.Any prior-information about the noise or the signal is unnecessary for the proposed method in this paper.The processing gain of the proposed method compared to the conventional broadband MVDR can be obtained as long as the amplitude fluctuation of the array noise frequency spectrum is severer than that of the target signal.The validity of the method is validated by the optimal signal detection theory.Simulation and real data are used to validate the performance of the method.Analysis results show that about 4 dB processing gain compared to the general broadband MVDR can be reached by the proposed method.
文摘An adaptive multiscale edge detection method based on region energy analysis is presented here. Region energy distributions of both sides in different edge directions are studied. Based on the analysis and on the ratio between region energy threshold difference and region area, the adaptive multiscale edge detection rnethod is developed. The experiment result shows that the new method is effective, feasible and noise-resistant in image detection.
文摘To solve the problem of energy efficiency of modern enterprise it is necessary to reduce energy consumption.One of the possible ways is proposed in this research.A multi-level hierarchical system for energy efficiency management of the enterprise is designed,it is based on the modular principle providing rapid modernization.The novelty of the work is the development of new and improvement of the existing methods and models,in particular:1)models for dynamic analysis of IT tools for data acquisition and processing(DAAP)in multilevel energy management systems,which are based on Petri nets;2)method of synthesis of DAAP tools in energy efficiency management information systems(EEMIS)of the enterprise which provides a reduction in hardware and time costs from 10%to 40%;3)method of conflict-free data exchange determining the minimum memory speed for the synthesis of realtime exchanges,it reduces the cost and energy consumption;4)method of calculating the signal of postsynaptic excitation of neural elements decreases the processing time of technological data two or more times.The proposed methods,models and tools have been tested while implementing the EEMIS of the intelligent mini-greenhouse,as a result,energy efficiency has increased by 12%-25%(depending on season and peculiarities of growing plants).
文摘The building sector is the largest consumer of energy in industrial countries. Saving energy in new buildings or building renovations can thus lead to significant global environmental impacts. In this endeavor, building information <span>modeling (BIM) and building energy modeling (BEM) are two important to</span>ols to make the transition to net-zero energy buildings (NZEB). So far, little attention has been devoted, in the literature, to discuss the connection between BIM, BEM, and Life-cycle assessment (LCA), which is the main topic of this article. A literature review of 157 journal articles and conference proceedings published between 1990 and 2020 is presented. This review outlines knowledge gaps concerning BIM, BEM, and environmental impact assessment. It suggests that defining the process with the right technology (at the right time) would result in a more integrated design process (IDP) and bridge current gaps. The most efficient way to improve process and technology is related to the competences of the architects, engineers and constructors (AEC). The review also indicates that the IDP in the early design phases (EDP) is in need of improvement for architects and engineers, where a better connection between design phases, specific levels of development (LOD) and BIM tools is needed. <span>Competences, process and technology are the three main themes addressed in the review. Their relation to design phases and LOD is discussed. The aim </span>is to propose possible solutions to the current hinders in BIM-to-BEM (BIM2BEM) and BIM-for-LCA (BIM4LCA) integration.