A strong and stable correlation in quantum information is of high quality for quantum information processing.We define two quantities,selective average correlation and ripple coefficient,to evaluate the quality of cor...A strong and stable correlation in quantum information is of high quality for quantum information processing.We define two quantities,selective average correlation and ripple coefficient,to evaluate the quality of correlation in quantum information in a time interval.As a new communication channel,Heisenberg spin chains are widely investigated.We select a two-qubit Heisenberg XXZs pin chain with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field as an example,and use the two quantities to evaluate the qualities of the correlation in quantum information with different measures.The result shows that,if the time evolutions are similar,there needs only evaluating one of them to know when the correlation has high quality for quantum information processing.展开更多
Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Ra...Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.展开更多
Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection ...Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in87 Rb atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.展开更多
In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manif...In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.展开更多
This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unman...This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unmanned aerial vehicles(UAVs)for target tracking,a multitarget tracking control algorithm under local information selection interaction is proposed.First,on the basis of location,number,and perceived target information of neighboring UAVs,a temporary leader selection strategy is designed to realize the local follow-up movement of UAVs when the UAVs cannot fully perceive the target.Second,in combination with the basic rules of cluster movement and target information perception factors,distributed control equations are designed to achieve a rapid gathering of UAVs and consistent tracking of multiple targets.Lastly,the simulation experiments are conducted in two-and three-dimensional spaces.Under a certain number of UAVs,clustering speed of the proposed algorithm is less than 3 s,and the equal probability of the UAV subgroup size after group separation is over 78%.展开更多
Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their different...Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues.First,a variation of the Relief algorithm,"RFE_Relief algorithm"was proposed to learn the relations between genes and tissue types.Then,a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts.After tissue-specific genes were removed,cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues.The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues,and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.展开更多
Microarray data based tumor diagnosis is a very interesting topic in bioinformatics. One of the key problems is the discovery and analysis of informative genes of a tumor. Although there are many elaborate approaches ...Microarray data based tumor diagnosis is a very interesting topic in bioinformatics. One of the key problems is the discovery and analysis of informative genes of a tumor. Although there are many elaborate approaches to this problem, it is still difficult to select a reasonable set of informative genes for tumor diagnosis only with microarray data. In this paper, we classify the genes expressed through microarray data into a number of clusters via the distance sensitive rival penalized competitive learning (DSRPCL) algorithm and then detect the informative gene cluster or set with the help of support vector machine (SVM). Moreover, the critical or powerful informative genes can be found through further classifications and detections on the obtained informative gene clusters. It is well demonstrated by experiments on the colon, leukemia, and breast cancer datasets that our proposed DSRPCL-SVM approach leads to a reasonable selection of informative genes for tumor diagnosis.展开更多
基金Supported by the National Natural Science Foundation of China(11075013,11375025)
文摘A strong and stable correlation in quantum information is of high quality for quantum information processing.We define two quantities,selective average correlation and ripple coefficient,to evaluate the quality of correlation in quantum information in a time interval.As a new communication channel,Heisenberg spin chains are widely investigated.We select a two-qubit Heisenberg XXZs pin chain with Dzyaloshinskii-Moriya interaction in an inhomogeneous magnetic field as an example,and use the two quantities to evaluate the qualities of the correlation in quantum information with different measures.The result shows that,if the time evolutions are similar,there needs only evaluating one of them to know when the correlation has high quality for quantum information processing.
基金partially supported by the National Natural Science Foundation of China(61571225,61271255,61232016,U1405254)the Open Foundation of Jiangsu Engineering Center of Network Monitoring(Nanjing University of Information Science and Technology)(Grant No.KJR1509)+2 种基金the PAPD fundthe CICAEET fundShenzhen Strategic Emerging Industry Development Funds(JSGG20150331160845693)
文摘Considering that perfect channel state information(CSI) is difficult to obtain in practice,energy efficiency(EE) for distributed antenna systems(DAS) based on imperfect CSI and antennas selection is investigated in Rayleigh fading channel.A novel EE that is defined as the average transmission rate divided by the total consumed power is introduced.In accordance with this definition,an adaptive power allocation(PA) scheme for DAS is proposed to maximize the EE under the maximum transmit power constraint.The solution of PA in the constrained EE optimization does exist and is unique.A practical iterative algorithm with Newton method is presented to obtain the solution of PA.The proposed scheme includes the one under perfect CSI as a special case,and it only needs large scale and statistical information.As a result,the scheme has low overhead and good robustness.The theoretical EE is also derived for performance evaluation,and simulation result shows the validity of the theoretical analysis.Moreover,EE can be enhanced by decreasing the estimation error and/or path loss exponents.
基金National Natural Science Foundation of China(NSFC)(11374238,11534008,11574247,11604258,11774286)China Postdoctoral Science Foundation(2016M592771)
文摘Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in87 Rb atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.
基金supported in part by the National Natural Science Foundation of China(Nos.61373093,61402310,61672364,and 61672365)the National Key Research and Development Program of China(No.2018YFA0701701)。
文摘In this paper,we propose an Unsupervised Nonlinear Adaptive Manifold Learning method(UNAML)that considers both global and local information.In this approach,we apply unlabeled training samples to study nonlinear manifold features,while considering global pairwise distances and maintaining local topology structure.Our method aims at minimizing global pairwise data distance errors as well as local structural errors.In order to enable our UNAML to be more efficient and to extract manifold features from the external source of new data,we add a feature approximate error that can be used to learn a linear extractor.Also,we add a feature approximate error that can be used to learn a linear extractor.In addition,we use a method of adaptive neighbor selection to calculate local structural errors.This paper uses the kernel matrix method to optimize the original algorithm.Our algorithm proves to be more effective when compared with the experimental results of other feature extraction methods on real face-data sets and object data sets.
文摘This study focuses on the problem of multitarget tracking.To address the existing problems of current tracking algorithms,as manifested by the time consumption of subgroup separation and the uneven group size of unmanned aerial vehicles(UAVs)for target tracking,a multitarget tracking control algorithm under local information selection interaction is proposed.First,on the basis of location,number,and perceived target information of neighboring UAVs,a temporary leader selection strategy is designed to realize the local follow-up movement of UAVs when the UAVs cannot fully perceive the target.Second,in combination with the basic rules of cluster movement and target information perception factors,distributed control equations are designed to achieve a rapid gathering of UAVs and consistent tracking of multiple targets.Lastly,the simulation experiments are conducted in two-and three-dimensional spaces.Under a certain number of UAVs,clustering speed of the proposed algorithm is less than 3 s,and the equal probability of the UAV subgroup size after group separation is over 78%.
基金supported in part by the National Natural Science Foundation of China(Grant No.60234020).
文摘Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues.First,a variation of the Relief algorithm,"RFE_Relief algorithm"was proposed to learn the relations between genes and tissue types.Then,a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts.After tissue-specific genes were removed,cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues.The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues,and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.
基金the National Natural Sci-ence Foundation of China (Grant No. 60471054)President Foundation of Peking University.
文摘Microarray data based tumor diagnosis is a very interesting topic in bioinformatics. One of the key problems is the discovery and analysis of informative genes of a tumor. Although there are many elaborate approaches to this problem, it is still difficult to select a reasonable set of informative genes for tumor diagnosis only with microarray data. In this paper, we classify the genes expressed through microarray data into a number of clusters via the distance sensitive rival penalized competitive learning (DSRPCL) algorithm and then detect the informative gene cluster or set with the help of support vector machine (SVM). Moreover, the critical or powerful informative genes can be found through further classifications and detections on the obtained informative gene clusters. It is well demonstrated by experiments on the colon, leukemia, and breast cancer datasets that our proposed DSRPCL-SVM approach leads to a reasonable selection of informative genes for tumor diagnosis.