A computer network can be defined as many computing devices connected via a communication medium like the internet.Computer network development has proposed how humans and devices communicate today.These networks have...A computer network can be defined as many computing devices connected via a communication medium like the internet.Computer network development has proposed how humans and devices communicate today.These networks have improved,facilitated,and made conventional forms of communication easier.However,it has also led to uptick in-network threats and assaults.In 2022,the global market for information technology is expected to reach$170.4 billion.However,in contrast,95%of cyber security threats globally are caused by human action.These networks may be utilized in several control systems,such as home-automation,chemical and physical assault detection,intrusion detection,and environmental monitoring.The proposed literature review presents a wide range of information on Wireless Social Networks(WSNs)and Internet of Things(IoT)frameworks.The aim is first to be aware of the existing issues(issues with traditional methods)and network attacks on WSN and IoT systems and how to defend them.The second is to review the novel work in the domain and find its limitations.The goal is to identify the area’s primary gray field or current research divide to enable others to address the range.Finally,we concluded that configuration.Message Rapid Spanning Tree Protocol(RSTP)messages have higher efficiency in network performance degradation than alternative Bridge Data Unit Protocol(BPDU)forms.The research divides our future research into solutions and newly developed techniques that can assist in completing the lacking component.In this research,we have selected articles from 2015 to 2021 to provide users with a comprehensive literature overview.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed ci...This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.展开更多
The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in th...The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in the literature but if a third degree of freedom like rotation has to be also taken into consideration the difficulty in estimating the target position and orientation is significantly increased. A network consisting of only a small number of low cost infrared transmitters/receivers is used in this paper to estimate the position of a mobile target on a plane as well as its draft orientation with an angular step of 45o or less. The distance and orientation estimation is based on the success rate that infrared patterns are retrieved at the target. This success rate parameter is calculated by simple ultra low cost microcontrollers. The architectural complexity and cost of the overall localization system is significantly lower than other approaches without sacrificing speed and accuracy. An error correction scheme like Turbo decoding is applied in order to increase the reliability and stability of the results by correcting burst errors introduced by real time noise.展开更多
The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement f...The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.展开更多
Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make...Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.展开更多
In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, includin...In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, including design of sensor node and sink, as well as corresponding development of control program and upper-computer software. The system sets single-chip Ameg16 as control center, realizes communication between nodes via nRF24L01 wireless transceiver module, and realizes communication between sink and upper computer via w5100 wireless internet module. It perceives illumination intensity via photoconductor, detects the human body position via infrared pyroelectric sensor, and places the sensor node on the lamp, so the light can be controlled according to position of human body and current illumination intensity, which can realize energy saving to a large extent on condition that lighting requirement is satisfied. The system has low cost, and there is no need to change the original lighting circuit. The light can be turned off by hand, and when multi-media are used for the class, light can keep off even it is dim. In addition, this system has the function of automatic fault report, which is convenient for property maintenance.展开更多
For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burd...For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burden on caregivers. We study to propose an active infrared-based method to identify wandering locomotion by monitoring rhythmical repetition of an elder’s indoor motion events. Specifically, we utilize our customized active infrared sensors to collect human indoor motions that will be converted into motion events by using hardware redundancy technique. Each motion event is a directed motion obtained via introducing temporal and dimensions into the spatial motion data. Based on the most cited spatial-temporal patterns of wandering locomotion, a spatiotemporal model is then proposed to identify wandering locomotion from an ongoing sequence of motion events. Experimental evaluation on eight individuals’ real-world motion datasets has shown that our proposed method is able to effectively identify wandering locomotion from repetitive events collected from active infrared sensors with a value over 98% for both accuracy and precision based on properly chosen parameters. Wandering in elders with dementia that follow specific spatiotemporal patterns can be reliably identified by analyzing repetitive motion events collected from active infrared sensors based on the well-known spatiotemporal patterns of wandering locomotion.展开更多
Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method...Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.展开更多
This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The...This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.展开更多
To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium ...To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.展开更多
Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of develop...Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.展开更多
An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the ...An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.展开更多
To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing...To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing cell measurement in network domain and to realize the moving target perception and trajectory prediction. Moreover,the feasibility and accuracy of the proposed method are verified through experiments. The experimental results demonstrate that the maximum error between the real trajectory and the predicted trajectory of the minimum sensing cell measurement method is 0.64 m,which can achieve infrared target perception and moving trajectory prediction.展开更多
A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill fa...A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.展开更多
基金This work is partly supported by the Malaysian Ministry of Education under Research Management Centre,Universiti Putra Malaysia,Putra Grant scheme with High Impact Factor under Grant Number UPM/700-2/1/GPB/2018/9659400.
文摘A computer network can be defined as many computing devices connected via a communication medium like the internet.Computer network development has proposed how humans and devices communicate today.These networks have improved,facilitated,and made conventional forms of communication easier.However,it has also led to uptick in-network threats and assaults.In 2022,the global market for information technology is expected to reach$170.4 billion.However,in contrast,95%of cyber security threats globally are caused by human action.These networks may be utilized in several control systems,such as home-automation,chemical and physical assault detection,intrusion detection,and environmental monitoring.The proposed literature review presents a wide range of information on Wireless Social Networks(WSNs)and Internet of Things(IoT)frameworks.The aim is first to be aware of the existing issues(issues with traditional methods)and network attacks on WSN and IoT systems and how to defend them.The second is to review the novel work in the domain and find its limitations.The goal is to identify the area’s primary gray field or current research divide to enable others to address the range.Finally,we concluded that configuration.Message Rapid Spanning Tree Protocol(RSTP)messages have higher efficiency in network performance degradation than alternative Bridge Data Unit Protocol(BPDU)forms.The research divides our future research into solutions and newly developed techniques that can assist in completing the lacking component.In this research,we have selected articles from 2015 to 2021 to provide users with a comprehensive literature overview.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.
文摘This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.
文摘The estimation of the position of a mobile target on a plane as well as its orientation is an important aspect for many applications. The indoor or outdoor localization of such a target has been widely addressed in the literature but if a third degree of freedom like rotation has to be also taken into consideration the difficulty in estimating the target position and orientation is significantly increased. A network consisting of only a small number of low cost infrared transmitters/receivers is used in this paper to estimate the position of a mobile target on a plane as well as its draft orientation with an angular step of 45o or less. The distance and orientation estimation is based on the success rate that infrared patterns are retrieved at the target. This success rate parameter is calculated by simple ultra low cost microcontrollers. The architectural complexity and cost of the overall localization system is significantly lower than other approaches without sacrificing speed and accuracy. An error correction scheme like Turbo decoding is applied in order to increase the reliability and stability of the results by correcting burst errors introduced by real time noise.
基金Supported by the National Nature Science Foundation of China(No.41527901)the Provincial Key Research and Development Program of Shandong,China(No.2019JZZY010417)the Special Program of Shandong Province for Qingdao Pilot National Laboratory of Marine Science and Technology(No.2021QNLM020002).
文摘The multi-point simultaneous long-term measurement of CO_(2) concentration in seawater can provide more-valuable data for further understanding of the spatial and temporal distribution of CO_(2).Thus,the requirement for a low-cost sensor with high precision,low power consumption,and a small size is becoming urgent.In this work,an in-situ sensor for CO_(2) detection in seawater,based on a permeable membrane and non-dispersive infrared(NDIR)technology,is developed.The sensor has a small size(Ф66 mm×124 mm),light weight(0.7 kg in air),low power consumption(<0.9 W),low cost(<US$1000),and high-pressure tolerance(<200 m).After laboratory performance tests,the sensor was found to have a measurement range of(0–2000)×10^(-6),and the gas linear correlation R^(2) is 0.99,with a precision of about 0.98%at a sampling rate of 1 s.A comparison measurement was carried out with a commercial sensor in a pool for 7 days,and the results showed a consistent trend.Further,the newly developed sensor was deployed in Qingdao nearshore water for 35 days.The results proved that the sensor could measure the dynamic changes of CO_(2) concentration in seawater continuously,and had the potential to carry out long-term observations on an oceanic platform.It is hoped that the sensor could be applied to field ocean observations in near future.
基金supported by the National Key Research and Development Program(2021YFA1201602)the NSFC(62004017)+2 种基金the Fundamental Research Funds for the Central Universities(2021CDJQY-019)J.C.also want to acknowledge the supporting from the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyjmsxmX0746)the Scientific Research Project of Chongqing Education Committee(Grant No.KJQN202100522).
文摘Label-sensor is an essential component of the label printer which is becoming a most significant tool for the development of Internet of Things(IoT).However,some drawbacks of the traditional infrared label-sensor make the printer fail to realize the high-speed recognition of labels as well as stable printing.Herein,we propose a selfpowered and highly sensitive tribo-label-sensor(TLS)for accurate label identification,positioning and counting by embedding triboelectric nanogenerator into the indispensable roller structure of a label printer.The sensing mechanism,device parameters and deep comparison with infrared sensor are systematically studied both in theory and experiment.As the results,TLS delivers 6 times higher signal magnitude than traditional one.Moreover,TLS is immune to label jitter and temperature variation during fast printing and can also be used for transparent label directly and shows long-term robustness.This work may provide an alternative toolkit with outstanding advantages to improve current label printer and further promote the development of IoT.
文摘In order to reach the objective of intelligence and energy saving for university classroom lighting, energy saving lighting control system in university classroom based on wireless sensor network is designed, including design of sensor node and sink, as well as corresponding development of control program and upper-computer software. The system sets single-chip Ameg16 as control center, realizes communication between nodes via nRF24L01 wireless transceiver module, and realizes communication between sink and upper computer via w5100 wireless internet module. It perceives illumination intensity via photoconductor, detects the human body position via infrared pyroelectric sensor, and places the sensor node on the lamp, so the light can be controlled according to position of human body and current illumination intensity, which can realize energy saving to a large extent on condition that lighting requirement is satisfied. The system has low cost, and there is no need to change the original lighting circuit. The light can be turned off by hand, and when multi-media are used for the class, light can keep off even it is dim. In addition, this system has the function of automatic fault report, which is convenient for property maintenance.
文摘For elders with dementia, wandering is among the most problematic, frequent and dangerous behavior. Managing wandering behavior has become increasingly imperative due to its high prevalence, negative outcomes and burden on caregivers. We study to propose an active infrared-based method to identify wandering locomotion by monitoring rhythmical repetition of an elder’s indoor motion events. Specifically, we utilize our customized active infrared sensors to collect human indoor motions that will be converted into motion events by using hardware redundancy technique. Each motion event is a directed motion obtained via introducing temporal and dimensions into the spatial motion data. Based on the most cited spatial-temporal patterns of wandering locomotion, a spatiotemporal model is then proposed to identify wandering locomotion from an ongoing sequence of motion events. Experimental evaluation on eight individuals’ real-world motion datasets has shown that our proposed method is able to effectively identify wandering locomotion from repetitive events collected from active infrared sensors with a value over 98% for both accuracy and precision based on properly chosen parameters. Wandering in elders with dementia that follow specific spatiotemporal patterns can be reliably identified by analyzing repetitive motion events collected from active infrared sensors based on the well-known spatiotemporal patterns of wandering locomotion.
基金Supported by the National Natural Science Foundation of China (No.50105002).
文摘Placement and wiring of vast amount of sensor elements on the 3-dimensionally configured robot sur-face to form soft sensor skin is very difficult with the traditional technology. In this paper we propose a new method to realize such a skin.By implanting infrared sensors array in an elastic body, we obtain an elastic and tough sensor skin that can be shaped freely.The developed sensor skin is a large-area, flexi-ble array of infrared sensors with data processing capabilities.Depending on the skin electronics, it en-dows its carrier with an ability to sense its surroundings.The structure, the method of infrared sensor sig-nal processing, and basic experiments of sensor skin are presented. The validity of the infrared sensor skin is investigated by preliminary obstacle avoidance trial.
文摘This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.
文摘To determine the refractive index of liquids in near infrared(lR), a method is presented by measuring the output angle of the visible Cerenkov-radiation-mode when liquids are placed as the cover on a planar lithium niobate waveguide. The system configuration and the principle of the method are analyzed and some experimental results are given out. Both the experimental result and simulation show that this method is simple, rapid and of sufficient precision.
文摘Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.
文摘An infrared sensor using the liquid crystal chopper is presented. The infrared sensor is designed to detect infrared rays with a pyroelectric element used as a liquid crystal chopper in such an infrared sensor or the like.
文摘To reasearch on the infrared target perception by pyroelectric infrared (PIR) sensor in network domain measurement,a closed sensing network domain composed of eight-PIR-sensor array is proposed for the minimum sensing cell measurement in network domain and to realize the moving target perception and trajectory prediction. Moreover,the feasibility and accuracy of the proposed method are verified through experiments. The experimental results demonstrate that the maximum error between the real trajectory and the predicted trajectory of the minimum sensing cell measurement method is 0.64 m,which can achieve infrared target perception and moving trajectory prediction.
文摘A new 128×128 element PtSi Schottky barrier infrared image sensor with ITCCD readout structure and PtSi thin film optical cavity detector structure has been fabricated,which has 50μm×50 μm pixels,a fill factor of 40 percent,the nonuniformity of 5% or less and the dynamic range of over or equal to 50 dB.The noise equivalent temperature difference is 0.2 K with f/1.0 optics at 300 K background. In this paper,the principle of operation,design consideration and fabrication technology for the device are described.