The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared...Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared and visible image fusion network based on a multiscale feature learning and attention mechanism(MsAFusion).A multiscale dilation convolution framework is employed to capture image features across various scales and broaden the perceptual scope.Furthermore,an attention network is introduced to enhance the focus on salient targets in infrared images and detailed textures in visible images.To compensate for information loss during convolution,jump connections are utilized during the image reconstruction phase.The fusion process utilizes a combined loss function consisting of pixel loss and gradient loss for unsupervised fusion of infrared and visible images.Extensive experiments on the dataset of electricity facilities demonstrate that our proposed method outperforms nine state-of-theart methods in terms of visual perception and four objective evaluation metrics.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金supported by the project of CSG Electric Power Research Institute(Grant No.SEPRI-K22B100)。
文摘Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared and visible image fusion network based on a multiscale feature learning and attention mechanism(MsAFusion).A multiscale dilation convolution framework is employed to capture image features across various scales and broaden the perceptual scope.Furthermore,an attention network is introduced to enhance the focus on salient targets in infrared images and detailed textures in visible images.To compensate for information loss during convolution,jump connections are utilized during the image reconstruction phase.The fusion process utilizes a combined loss function consisting of pixel loss and gradient loss for unsupervised fusion of infrared and visible images.Extensive experiments on the dataset of electricity facilities demonstrate that our proposed method outperforms nine state-of-theart methods in terms of visual perception and four objective evaluation metrics.