A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im...Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.展开更多
Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve i...Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.展开更多
The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients ar...The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.展开更多
Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhanc...Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.展开更多
Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared...Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared and visible image fusion network based on a multiscale feature learning and attention mechanism(MsAFusion).A multiscale dilation convolution framework is employed to capture image features across various scales and broaden the perceptual scope.Furthermore,an attention network is introduced to enhance the focus on salient targets in infrared images and detailed textures in visible images.To compensate for information loss during convolution,jump connections are utilized during the image reconstruction phase.The fusion process utilizes a combined loss function consisting of pixel loss and gradient loss for unsupervised fusion of infrared and visible images.Extensive experiments on the dataset of electricity facilities demonstrate that our proposed method outperforms nine state-of-theart methods in terms of visual perception and four objective evaluation metrics.展开更多
In order to improve the detail preservation and target information integrity of different sensor fusion images,an image fusion method of different sensors based on non-subsampling contourlet transform(NSCT)and GoogLeN...In order to improve the detail preservation and target information integrity of different sensor fusion images,an image fusion method of different sensors based on non-subsampling contourlet transform(NSCT)and GoogLeNet neural network model is proposed. First,the different sensors images,i. e.,infrared and visible images,are transformed by NSCT to obtain a low frequency sub-band and a series of high frequency sub-bands respectively.Then,the high frequency sub-bands are fused with the max regional energy selection strategy,the low frequency subbands are input into GoogLeNet neural network model to extract feature maps,and the fusion weight matrices are adaptively calculated from the feature maps. Next,the fused low frequency sub-band is obtained with weighted summation. Finally,the fused image is obtained by inverse NSCT. The experimental results demonstrate that the proposed method improves the image visual effect and achieves better performance in both edge retention and mutual information.展开更多
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金supported in part by the National Natural Science Foundation of China under Grant 41505017.
文摘Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.
文摘Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.61402368)Aerospace Support Fund,China(Grant No.2017-HT-XGD)Aerospace Science and Technology Innovation Foundation,China(Grant No.2017 ZD 53047)
文摘The high-frequency components in the traditional multi-scale transform method are approximately sparse, which can represent different information of the details. But in the low-frequency component, the coefficients around the zero value are very few, so we cannot sparsely represent low-frequency image information. The low-frequency component contains the main energy of the image and depicts the profile of the image. Direct fusion of the low-frequency component will not be conducive to obtain highly accurate fusion result. Therefore, this paper presents an infrared and visible image fusion method combining the multi-scale and top-hat transforms. On one hand, the new top-hat-transform can effectively extract the salient features of the low-frequency component. On the other hand, the multi-scale transform can extract highfrequency detailed information in multiple scales and from diverse directions. The combination of the two methods is conducive to the acquisition of more characteristics and more accurate fusion results. Among them, for the low-frequency component, a new type of top-hat transform is used to extract low-frequency features, and then different fusion rules are applied to fuse the low-frequency features and low-frequency background; for high-frequency components, the product of characteristics method is used to integrate the detailed information in high-frequency. Experimental results show that the proposed algorithm can obtain more detailed information and clearer infrared target fusion results than the traditional multiscale transform methods. Compared with the state-of-the-art fusion methods based on sparse representation, the proposed algorithm is simple and efficacious, and the time consumption is significantly reduced.
基金supported by the China Postdoctoral Science Foundation Funded Project(No.2021M690385)the National Natural Science Foundation of China(No.62101045).
文摘Infrared-visible image fusion plays an important role in multi-source data fusion,which has the advantage of integrating useful information from multi-source sensors.However,there are still challenges in target enhancement and visual improvement.To deal with these problems,a sub-regional infrared-visible image fusion method(SRF)is proposed.First,morphology and threshold segmentation is applied to extract targets interested in infrared images.Second,the infrared back-ground is reconstructed based on extracted targets and the visible image.Finally,target and back-ground regions are fused using a multi-scale transform.Experimental results are obtained using public data for comparison and evaluation,which demonstrate that the proposed SRF has poten-tial benefits over other methods.
基金supported by the project of CSG Electric Power Research Institute(Grant No.SEPRI-K22B100)。
文摘Current fusion methods for infrared and visible images tend to extract features at a single scale,which results in insufficient detail and incomplete feature preservation.To address these issues,we propose an infrared and visible image fusion network based on a multiscale feature learning and attention mechanism(MsAFusion).A multiscale dilation convolution framework is employed to capture image features across various scales and broaden the perceptual scope.Furthermore,an attention network is introduced to enhance the focus on salient targets in infrared images and detailed textures in visible images.To compensate for information loss during convolution,jump connections are utilized during the image reconstruction phase.The fusion process utilizes a combined loss function consisting of pixel loss and gradient loss for unsupervised fusion of infrared and visible images.Extensive experiments on the dataset of electricity facilities demonstrate that our proposed method outperforms nine state-of-theart methods in terms of visual perception and four objective evaluation metrics.
基金supported by the National Natural Science Foundation of China(No.61301211)the China Scholarship Council(No.201906835017)
文摘In order to improve the detail preservation and target information integrity of different sensor fusion images,an image fusion method of different sensors based on non-subsampling contourlet transform(NSCT)and GoogLeNet neural network model is proposed. First,the different sensors images,i. e.,infrared and visible images,are transformed by NSCT to obtain a low frequency sub-band and a series of high frequency sub-bands respectively.Then,the high frequency sub-bands are fused with the max regional energy selection strategy,the low frequency subbands are input into GoogLeNet neural network model to extract feature maps,and the fusion weight matrices are adaptively calculated from the feature maps. Next,the fused low frequency sub-band is obtained with weighted summation. Finally,the fused image is obtained by inverse NSCT. The experimental results demonstrate that the proposed method improves the image visual effect and achieves better performance in both edge retention and mutual information.