AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hos...AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.展开更多
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho...To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.展开更多
●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS...●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction.展开更多
A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The ne...A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.展开更多
To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed...To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.展开更多
The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of tr...The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).展开更多
In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data...In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data fusion of current and infrared images.Firstly,VMD was used to decompose the motor current signal and extract the low-frequency component of the bearing fault signal.On this basis,the current signal was transformed into a two-dimensional graph suitable for convolutional neural network,and the data set was classified by convolutional neural network and softmax classifier.Secondly,the infrared image was segmented and the fault features were extracted,so as to calculate the similarity with the infrared image of the fault bearing in the library,and further the sigmod classifier was used to classify the data.Finally,a decision-level fusion method was introduced to fuse the current signal with the infrared image signal diagnosis result according to the weight,and the motor bearing fault diagnosis result was obtained.Through experimental verification,the proposed fault diagnosis method could be used for the fault diagnosis of motor bearing outer ring under the condition of load variation,and the accuracy of fault diagnosis can reach 98.85%.展开更多
Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve i...Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.展开更多
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f...To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.展开更多
In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusi...In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.展开更多
The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information ...The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.展开更多
Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is ...Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).展开更多
In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, the...In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.展开更多
The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time tha...The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass.展开更多
This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enab...This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials.展开更多
Dear Editor,3×3 Infrared imaging,generally,of low quality,plays an important role in security surveillance and target detection.In this letter,we improve the quality of infrared images by combining both hardware ...Dear Editor,3×3 Infrared imaging,generally,of low quality,plays an important role in security surveillance and target detection.In this letter,we improve the quality of infrared images by combining both hardware and software.To this end,an infrared light field imaging enhancement system is built for the first time,including a infrared light field imaging device,a large-scale infrared light field dataset(IRLF-WHU),and a progressive fusion network for infrared image enhancement(IR-PFNet).展开更多
We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consiste...We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.展开更多
Background: Despite its variety of potential applications, the wide implementation of infrared technology in cattle production faces technical, environmental and biological challenges similar to other indicators of m...Background: Despite its variety of potential applications, the wide implementation of infrared technology in cattle production faces technical, environmental and biological challenges similar to other indicators of metabolic state. Nine trials, divided into three classes (technological, environmental and biological factors) were conducted to illustrate the influence of these factors on body surface temperature assessed through infrared imaging. Results: Evaluation of technological factors indicated the following: measurements of body temperatures were strongly repeatable when taken within ]0 s; appropriateness of differing infrared camera technologies was influenced by distance to the target; and results were consistent when analysis of thermographs was compared between judges. Evaluation of environmental factors illustrated that wind and debris caused decreases in body surface temperatures without affecting metabolic rate; additionally, body surface temperature increased due to sunlight but returned to baseline values within minutes of shade exposure. Examination/investigation/exploration of animal factors demonstrated that exercise caused an increase in body surface temperature and metabolic rate. Administration of sedative and anti-sedative caused changes on body surface temperature and metabolic rate, and during late pregnancy a foetal thermal imprint was visible through abdominal infrared imaging. Conclusion: The above factors should be considered in order to standardize operational procedures for taking thermographs, thereby optimizing the use of such technology in cattle operations.展开更多
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac...It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.展开更多
Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion im...Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.展开更多
文摘AIM:To establish pupil diameter measurement algorithms based on infrared images that can be used in real-world clinical settings.METHODS:A total of 188 patients from outpatient clinic at He Eye Specialist Shenyang Hospital from Spetember to December 2022 were included,and 13470 infrared pupil images were collected for the study.All infrared images for pupil segmentation were labeled using the Labelme software.The computation of pupil diameter is divided into four steps:image pre-processing,pupil identification and localization,pupil segmentation,and diameter calculation.Two major models are used in the computation process:the modified YoloV3 and Deeplabv 3+models,which must be trained beforehand.RESULTS:The test dataset included 1348 infrared pupil images.On the test dataset,the modified YoloV3 model had a detection rate of 99.98% and an average precision(AP)of 0.80 for pupils.The DeeplabV3+model achieved a background intersection over union(IOU)of 99.23%,a pupil IOU of 93.81%,and a mean IOU of 96.52%.The pupil diameters in the test dataset ranged from 20 to 56 pixels,with a mean of 36.06±6.85 pixels.The absolute error in pupil diameters between predicted and actual values ranged from 0 to 7 pixels,with a mean absolute error(MAE)of 1.06±0.96 pixels.CONCLUSION:This study successfully demonstrates a robust infrared image-based pupil diameter measurement algorithm,proven to be highly accurate and reliable for clinical application.
基金supported by Natural Science Foundation of Jilin Province(YDZJ202401352ZYTS).
文摘To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method.
基金Supported by Natural Science Foundation of Fujian Province(No.2020J011084)Fujian Province Technology and Economy Integration Service Platform(No.2023XRH001)Fuzhou-Xiamen-Quanzhou National Independent Innovation Demonstration Zone Collaborative Innovation Platform(No.2022FX5)。
文摘●AIM:To investigate a pioneering framework for the segmentation of meibomian glands(MGs),using limited annotations to reduce the workload on ophthalmologists and enhance the efficiency of clinical diagnosis.●METHODS:Totally 203 infrared meibomian images from 138 patients with dry eye disease,accompanied by corresponding annotations,were gathered for the study.A rectified scribble-supervised gland segmentation(RSSGS)model,incorporating temporal ensemble prediction,uncertainty estimation,and a transformation equivariance constraint,was introduced to address constraints imposed by limited supervision information inherent in scribble annotations.The viability and efficacy of the proposed model were assessed based on accuracy,intersection over union(IoU),and dice coefficient.●RESULTS:Using manual labels as the gold standard,RSSGS demonstrated outcomes with an accuracy of 93.54%,a dice coefficient of 78.02%,and an IoU of 64.18%.Notably,these performance metrics exceed the current weakly supervised state-of-the-art methods by 0.76%,2.06%,and 2.69%,respectively.Furthermore,despite achieving a substantial 80%reduction in annotation costs,it only lags behind fully annotated methods by 0.72%,1.51%,and 2.04%.●CONCLUSION:An innovative automatic segmentation model is developed for MGs in infrared eyelid images,using scribble annotation for training.This model maintains an exceptionally high level of segmentation accuracy while substantially reducing training costs.It holds substantial utility for calculating clinical parameters,thereby greatly enhancing the diagnostic efficiency of ophthalmologists in evaluating meibomian gland dysfunction.
文摘A novel image fusion network framework with an autonomous encoder and decoder is suggested to increase thevisual impression of fused images by improving the quality of infrared and visible light picture fusion. The networkcomprises an encoder module, fusion layer, decoder module, and edge improvementmodule. The encoder moduleutilizes an enhanced Inception module for shallow feature extraction, then combines Res2Net and Transformerto achieve deep-level co-extraction of local and global features from the original picture. An edge enhancementmodule (EEM) is created to extract significant edge features. A modal maximum difference fusion strategy isintroduced to enhance the adaptive representation of information in various regions of the source image, therebyenhancing the contrast of the fused image. The encoder and the EEM module extract features, which are thencombined in the fusion layer to create a fused picture using the decoder. Three datasets were chosen to test thealgorithmproposed in this paper. The results of the experiments demonstrate that the network effectively preservesbackground and detail information in both infrared and visible images, yielding superior outcomes in subjectiveand objective evaluations.
文摘To address the issues of incomplete information,blurred details,loss of details,and insufficient contrast in infrared and visible image fusion,an image fusion algorithm based on a convolutional autoencoder is proposed.The region attention module is meant to extract the background feature map based on the distinct properties of the background feature map and the detail feature map.A multi-scale convolution attention module is suggested to enhance the communication of feature information.At the same time,the feature transformation module is introduced to learn more robust feature representations,aiming to preserve the integrity of image information.This study uses three available datasets from TNO,FLIR,and NIR to perform thorough quantitative and qualitative trials with five additional algorithms.The methods are assessed based on four indicators:information entropy(EN),standard deviation(SD),spatial frequency(SF),and average gradient(AG).Object detection experiments were done on the M3FD dataset to further verify the algorithm’s performance in comparison with five other algorithms.The algorithm’s accuracy was evaluated using the mean average precision at a threshold of 0.5(mAP@0.5)index.Comprehensive experimental findings show that CAEFusion performs well in subjective visual and objective evaluation criteria and has promising potential in downstream object detection tasks.
基金supported by the National Key Research and Development Program of China(Nos.2019YFE03090100 and 2022YFE03100002)National Natural Science Foundation of China(No.12075241)。
文摘The optical design of near-infrared phase contrast imaging(NI-PCI)diagnosis on HL-2A is introduced in this paper.This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology.This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations.Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed.The 1550 nm laser is chosen as the probe beam and highprecision optical components are designed to fit the laser beam,in which a phase plate with a 194-nm-deep silver groove is the key.Compared with the conventional 10.6μm laser-based PCI system on HL-2A,NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm^(-1)to 32.6 cm^(-1).
基金supported by National Natural Science Foundation of China(No.61903291)Shaanxi Province Key R&D Program(No.2022GY-134)。
文摘In order to improve the accuracy of rolling bearing fault diagnosis when the motor is running under non-stationary conditions,an AC motor rolling bearing fault diagnosis method was proposed based on heterogeneous data fusion of current and infrared images.Firstly,VMD was used to decompose the motor current signal and extract the low-frequency component of the bearing fault signal.On this basis,the current signal was transformed into a two-dimensional graph suitable for convolutional neural network,and the data set was classified by convolutional neural network and softmax classifier.Secondly,the infrared image was segmented and the fault features were extracted,so as to calculate the similarity with the infrared image of the fault bearing in the library,and further the sigmod classifier was used to classify the data.Finally,a decision-level fusion method was introduced to fuse the current signal with the infrared image signal diagnosis result according to the weight,and the motor bearing fault diagnosis result was obtained.Through experimental verification,the proposed fault diagnosis method could be used for the fault diagnosis of motor bearing outer ring under the condition of load variation,and the accuracy of fault diagnosis can reach 98.85%.
文摘Traditional techniques based on image fusion are arduous in integrating complementary or heterogeneous infrared(IR)/visible(VS)images.Dissimilarities in various kind of features in these images are vital to preserve in the single fused image.Hence,simultaneous preservation of both the aspects at the same time is a challenging task.However,most of the existing methods utilize the manual extraction of features;and manual complicated designing of fusion rules resulted in a blurry artifact in the fused image.Therefore,this study has proposed a hybrid algorithm for the integration of multi-features among two heterogeneous images.Firstly,fuzzification of two IR/VS images has been done by feeding it to the fuzzy sets to remove the uncertainty present in the background and object of interest of the image.Secondly,images have been learned by two parallel branches of the siamese convolutional neural network(CNN)to extract prominent features from the images as well as high-frequency information to produce focus maps containing source image information.Finally,the obtained focused maps which contained the detailed integrated information are directly mapped with the source image via pixelwise strategy to result in fused image.Different parameters have been used to evaluate the performance of the proposed image fusion by achieving 1.008 for mutual information(MI),0.841 for entropy(EG),0.655 for edge information(EI),0.652 for human perception(HP),and 0.980 for image structural similarity(ISS).Experimental results have shown that the proposed technique has attained the best qualitative and quantitative results using 78 publically available images in comparison to the existing discrete cosine transform(DCT),anisotropic diffusion&karhunen-loeve(ADKL),guided filter(GF),random walk(RW),principal component analysis(PCA),and convolutional neural network(CNN)methods.
文摘To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent.
基金Open Fund Project of Key Laboratory of Instrumentation Science&Dynamic Measurement(No.2DSYSJ2015005)Specialized Research Fund for the Doctoral Program of Ministry of Education Colleges(No.20121420110004)
文摘In view of the problem that current mainstream fusion method of infrared polarization image—Multiscale Geometry Analysis method only focuses on a certain characteristic to image representation.And spatial domain fusion method,Principal Component Analysis(PCA)method has the shortcoming of losing small target,this paper presents a new fusion method of infrared polarization images based on combination of Nonsubsampled Shearlet Transformation(NSST)and improved PCA.This method can make full use of the effectiveness to image details expressed by NSST and the characteristics that PCA can highlight the main features of images.The combination of the two methods can integrate the complementary features of themselves to retain features of targets and image details fully.Firstly,intensity and polarization images are decomposed into low frequency and high frequency components with different directions by NSST.Secondly,the low frequency components are fused with improved PCA,while the high frequency components are fused by joint decision making rule with local energy and local variance.Finally,the fused image is reconstructed with the inverse NSST to obtain the final fused image of infrared polarization.The experiment results show that the method proposed has higher advantages than other methods in terms of detail preservation and visual effect.
文摘The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.
基金The Natural Science Foundation of Jiangsu Province(No.BK2012559)Qing Lan Project of Jiangsu Province
文摘Based on an avalanche photodiode( APD) detecting array working in Geiger mode( GM-APD), a high-performance infrared sensor readout integrated circuit( ROIC) used for infrared 3D( three-dimensional) imaging is proposed. The system mainly consists of three functional modules, including active quenching circuit( AQC), time-to-digital converter( TDC) circuit and other timing controller circuit. Each AQC and TDC circuit together constitutes the pixel circuit. Under the cooperation with other modules, the current signal generated by the GM-APD sensor is detected by the AQC, and the photon time-of-flight( TOF) is measured and converted to a digital signal output to achieve a better noise suppression and a higher detection sensitivity by the TDC. The ROIC circuit is fabricated by the CSMC 0. 5 μm standard CMOS technology. The array size is 8 × 8, and the center distance of two adjacent cells is 100μm. The measurement results of the chip showthat the performance of the circuit is good, and the chip can achieve 1 ns time resolution with a 250 MHz reference clock, and the circuit can be used in the array structure of the infrared detection system or focal plane array( FPA).
基金supported by the China Postdoctoral Science Foundation(20100471451)the Science and Technology Foundation of State Key Laboratory of Underwater Measurement&Control Technology(9140C2603051003)
文摘In the methods of image thresholding segmentation, such methods based on two-dimensional (2D) histogram and optimal objective functions are important. However, when they are used for infrared image segmentation, they are weak in suppressing background noises and worse in segmenting targets with non-uniform gray level. The concept of 2D histogram shape modification is proposed, which is realized by target information prior restraint after enhancing target information using plateau histogram equalization. The formula of 2D minimum Renyi entropy is deduced for image segmentation, then the shape-modified 2D histogram is combined wfth four optimal objective functions (i.e., maximum between-class variance, maximum entropy, maximum correlation and minimum Renyi entropy) respectively for the appli- cation of infrared image segmentation. Simultaneously, F-measure is introduced to evaluate the segmentation effects objectively. The experimental results show that F-measure is an effective evaluation index for image segmentation since its value is fully consistent with the subjective evaluation, and after 2D histogram shape modification, the methods of optimal objective functions can overcome their original forms' deficiency and their segmentation effects are more or less improvements, where the best one is the maximum entropy method based on 2D histogram shape modification.
基金China-Germany international cooperation project(IRTG1070)National Natural Science Foundation of China(Item number:0971940)
文摘The present paper utilizes thermal infrared image for inversion of winter wheat yield and biomass with different technology of irrigation(drip irrigation,sprinkler irrigation,flood irrigation).It is the first time that thermal infrared image is used for predicting the winter wheat yield and biomass.The temperature of crop and background was measured by thermal infrared image.It is necessary to get the crop background separation index(CBSIL,CBSIH),which can be used for distinguishing the crop value from the image.CBSIL and CBSIH(the temperature when the leaves are wet adequately;the temperature when the stomata of leaf is closed completely) are the threshold values.The temperature of crop ranged from CBSIL to CBSIH.Then the ICWSI was calculated based on relevant theoretical method.The value of stomata leaf has strong negative correlation with ICWSI proving the reliable value of ICWSI.In order to construct the high accuracy simulation model,the samples were divided into two parts.One was used for constructing the simulation model,the other for checking the accuracy of the model.Such result of the model was concluded as:(1) As for the simulation model of soil moisture,the correlation coefficient(R2) is larger than 0.887 6,the average of relative error(Er) ranges from 13.33% to 16.88%;(2) As for the simulation model of winter wheat yield,drip irrigation(0.887 6,16.89%,-0.12),sprinkler irrigation(0.970 0,14.85%,-0.12),flood irrigation(0.969 0,18.87%,0.18),with the values of R2,Er and CRM listed in the parentheses followed by the individual term.(3) As for winter wheat biomass,drip irrigation(0.980 0,13.70%,0.13),sprinkler irrigation(0.95,13.15%,-0.14),flood irrigation(0.970 0,14.48%,-0.13),and the values in the parentheses are demonstrated the same as above.Both the CRM and Er are shown to be very low values,which points to the accuracy and reliability of the model investigated.The accuracy of model is high and reliable.The results indicated that thermal infrared image can be used potentially for inversion of winter wheat yield and biomass.
文摘This review paper reports near-infrared(NIR)imaging studies using a newly-developed NIR camera,Compovision.Compovision can measure a significantly wide area of 150mm×250mm at high speed of between 2and 5s.It enables a wide spectral region measurement in the 1 000~2 350nm range at 6nm intervals.We investigated the potential of Compovision in the applications to industrial problems such as the evaluation of pharmaceutical tablets and polymers.Our studies have demonstrated that NIR imaging based on Compovision can solve several issues such as long acquisition times and relatively low sensitivity of detection.NIR imaging with Compovision is strongly expected to be applied not only to pharmaceutical tablet monitoring and polymer characterization but also to various applications such as those to food products,biomedical substances and organic and inorganic materials.
文摘Dear Editor,3×3 Infrared imaging,generally,of low quality,plays an important role in security surveillance and target detection.In this letter,we improve the quality of infrared images by combining both hardware and software.To this end,an infrared light field imaging enhancement system is built for the first time,including a infrared light field imaging device,a large-scale infrared light field dataset(IRLF-WHU),and a progressive fusion network for infrared image enhancement(IR-PFNet).
基金Funded by the Program for New Century Excellent Talents in University (11-0687)the National Natural Science Foundation of China (51172169)the Fundamental Research Funds for the Central Universities (Wuhan University of Technology)
文摘We investigated image processing algorithms of the original infrared glass flaw image. Using the Laplacian edge enhancement following LSD (Line Segment Detector) algorithm, we can get a good flaw image very consistent with the original one. This study is very helpful to further enhance the infrared glass flaw inspection technique.
基金the Beef Producers of Ontario,Ontario Ministry of Agriculture and Rural Affairs,Beef Cattle Research Council and Agri-Food Canada for financial support
文摘Background: Despite its variety of potential applications, the wide implementation of infrared technology in cattle production faces technical, environmental and biological challenges similar to other indicators of metabolic state. Nine trials, divided into three classes (technological, environmental and biological factors) were conducted to illustrate the influence of these factors on body surface temperature assessed through infrared imaging. Results: Evaluation of technological factors indicated the following: measurements of body temperatures were strongly repeatable when taken within ]0 s; appropriateness of differing infrared camera technologies was influenced by distance to the target; and results were consistent when analysis of thermographs was compared between judges. Evaluation of environmental factors illustrated that wind and debris caused decreases in body surface temperatures without affecting metabolic rate; additionally, body surface temperature increased due to sunlight but returned to baseline values within minutes of shade exposure. Examination/investigation/exploration of animal factors demonstrated that exercise caused an increase in body surface temperature and metabolic rate. Administration of sedative and anti-sedative caused changes on body surface temperature and metabolic rate, and during late pregnancy a foetal thermal imprint was visible through abdominal infrared imaging. Conclusion: The above factors should be considered in order to standardize operational procedures for taking thermographs, thereby optimizing the use of such technology in cattle operations.
基金supported by China Southern Power Grid Co.Ltd.science and technology project(Research on the theory,technology and application of stereoscopic disaster defense for power distribution network in large city,GZHKJXM20180060)National Natural Science Foundation of China(No.51477100).
文摘It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant 41505017.
文摘Multi-source information can be obtained through the fusion of infrared images and visible light images,which have the characteristics of complementary information.However,the existing acquisition methods of fusion images have disadvantages such as blurred edges,low contrast,and loss of details.Based on convolution sparse representation and improved pulse-coupled neural network this paper proposes an image fusion algorithm that decompose the source images into high-frequency and low-frequency subbands by non-subsampled Shearlet Transform(NSST).Furthermore,the low-frequency subbands were fused by convolutional sparse representation(CSR),and the high-frequency subbands were fused by an improved pulse coupled neural network(IPCNN)algorithm,which can effectively solve the problem of difficulty in setting parameters of the traditional PCNN algorithm,improving the performance of sparse representation with details injection.The result reveals that the proposed method in this paper has more advantages than the existing mainstream fusion algorithms in terms of visual effects and objective indicators.