Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random ...Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.展开更多
Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned w...Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam. At present, this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam. This is a labour intensive task which has negative impacts on the consistency and quality of coal production. As a solution to this problem, this paper presents a sensing method to automatically track geological coal seam features on the longwall face, known as marker bands, using thermal infrared imaging. These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams. Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction. Details on the theory of thermal infrared imaging are given, as well as practical aspects associated with machine-based implementation underground. The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach. The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.展开更多
Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing camera that has low power consumption and high compression ratio. Moreover, a PCE camera can control individual pixel exposure time that can ena...Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing camera that has low power consumption and high compression ratio. Moreover, a PCE camera can control individual pixel exposure time that can enable high dynamic range. Conventional approaches of using PCE camera involve a time consuming and lossy process to reconstruct the original frames and then use those frames for target tracking and classification. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. Our approach has two parts: tracking and classification. The tracking has been done using YOLO (You Only Look Once) and the classification is achieved using Residual Network (ResNet). Extensive experiments using mid-wave infrared (MWIR) and long-wave infrared (LWIR) videos demonstrated the efficacy of our proposed approach.展开更多
In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algo...In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.展开更多
Crowd behaviors analysis is the‘state of art’research topic in the field of computer vision which provides applications in video surveillance to crowd safety,event detection,security,etc.Literature presents some of ...Crowd behaviors analysis is the‘state of art’research topic in the field of computer vision which provides applications in video surveillance to crowd safety,event detection,security,etc.Literature presents some of the works related to crowd behavior detection and analysis.In crowd behavior detection,varying density of crowds and motion patterns appears to be complex occlusions for the researchers.This work presents a novel crowd behavior detection system to improve these restrictions.The proposed crowd behavior detection system is developed using hybrid tracking model and integrated features enabled neural network.The object movement and activity in the proposed crowded behavior detection system is assessed using proposed GSLM-based neural network.GSLM based neural network is developed by integrating the gravitational search algorithm with LM algorithm of the neural network to increase the learning process of the network.The performance of the proposed crowd behavior detection system is validated over five different videos and analyzed using accuracy.The experimentation results in the crowd behavior detection with a maximum accuracy of 93%which proves the efficacy of the proposed system in video surveillance with security concerns.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMSh...In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.展开更多
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目...针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。展开更多
文摘Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.
基金the Australian Coal Association Research Program(ACARP)for their invaluable support that enabled new research and development into longwall shearer automation
文摘Longwall mining continues to remain the most efficient method for underground coal recovery. A key aspect in achieving safe and productive longwall mining is to ensure that the shearer is always correctly positioned within the coal seam. At present, this machine positioning task is the role of longwall personnel who must simultaneously monitor the longwall coal face and the shearer's cutting drum position to infer the geological trends of the coal seam. This is a labour intensive task which has negative impacts on the consistency and quality of coal production. As a solution to this problem, this paper presents a sensing method to automatically track geological coal seam features on the longwall face, known as marker bands, using thermal infrared imaging. These non-visible marker bands are geological features that link strongly to the horizontal trends present in layered coal seams. Tracking these line-like features allows the generation of a vertical datum that can be used to maintain the shearer in a position for optimal coal extraction. Details on the theory of thermal infrared imaging are given, as well as practical aspects associated with machine-based implementation underground. The feature detection and tracking tasks are given with real measurements to demonstrate the efficacy of the approach. The outcome is important as it represents a new selective mining capability to help address a long-standing limitation in longwall mining operations.
文摘Pixel-wise Code Exposure (PCE) camera is one type of compressive sensing camera that has low power consumption and high compression ratio. Moreover, a PCE camera can control individual pixel exposure time that can enable high dynamic range. Conventional approaches of using PCE camera involve a time consuming and lossy process to reconstruct the original frames and then use those frames for target tracking and classification. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. Our approach has two parts: tracking and classification. The tracking has been done using YOLO (You Only Look Once) and the classification is achieved using Residual Network (ResNet). Extensive experiments using mid-wave infrared (MWIR) and long-wave infrared (LWIR) videos demonstrated the efficacy of our proposed approach.
文摘In this paper, the principle of Cuckoo algorithm is introduced, and the traditional Cuckoo algorithm is improved to establish a mathematical model of multi-objective optimization scheduling. Based on the improved algorithm, the model is optimized to a certain extent. Through analysis, it is proved that the improved algorithm has higher computational accuracy and can effectively improve the global convergence.
文摘Crowd behaviors analysis is the‘state of art’research topic in the field of computer vision which provides applications in video surveillance to crowd safety,event detection,security,etc.Literature presents some of the works related to crowd behavior detection and analysis.In crowd behavior detection,varying density of crowds and motion patterns appears to be complex occlusions for the researchers.This work presents a novel crowd behavior detection system to improve these restrictions.The proposed crowd behavior detection system is developed using hybrid tracking model and integrated features enabled neural network.The object movement and activity in the proposed crowded behavior detection system is assessed using proposed GSLM-based neural network.GSLM based neural network is developed by integrating the gravitational search algorithm with LM algorithm of the neural network to increase the learning process of the network.The performance of the proposed crowd behavior detection system is validated over five different videos and analyzed using accuracy.The experimentation results in the crowd behavior detection with a maximum accuracy of 93%which proves the efficacy of the proposed system in video surveillance with security concerns.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
文摘In this paper, we propose multiple CAMShift Algorithm based on Kalman filter and weighted search windows that extracts skin color area and tracks several human body parts for real-time human tracking system. The CAMShift Algorithm we propose searches the skin color region by detecting the skin color area from background model. Kalman filter stabilizes the floated search area of CAMShift Algorithm. Each occlusion areas are avoided by using weighted window of non-search areas and main-search area. And shadows are eliminated from background model and intensity of shadow. The proposed modified Camshaft algorithm can estimate human pose in real-time and achieves 96.82% accuracy even in the case of occlusions.
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。
文摘针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。