Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of develop...Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.展开更多
Previous studies have reported that the mirror neuron system plays a crucial role in social cognition. We examined whether the higher-order cognitive functions are involved in the activations in the mirror neuron area...Previous studies have reported that the mirror neuron system plays a crucial role in social cognition. We examined whether the higher-order cognitive functions are involved in the activations in the mirror neuron area when we perceive simplified pseudo-postures. We measured 14 participants’ brain activation during the posture-recognition task using near-infrared spectroscopy. The participants’ task was to observe five sequentially presented target pseudo-postures and judge whether a test pseudo-posture was identical to one of the preceding five target pseudo-postures. The results in the majority of participants (n = 10/14) revealed that the activity in the inferior frontal mirror neuron area is modulated by perception of human-likeness, but not in the remaining four participants (n = 4/14). These results suggest that the degree of the activation of higher-order cognitive functions, which may be engaged in the inhibitory and/or facilitative processing of human body or bodily movement, leads to the distinctive activities in the inferior frontal mirror neuron area.展开更多
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the hu...The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the human body 3D modeling using one Kinect sensor modeling method. To get the human body model fast, three steps in rapid modeling of the human body are carried out. Firstly, according to anthropometric parameters, the standard model is parameterized; Secondly, the Kinect depth image of the human body model is gotten through, then, by using the PCL library the point cloud data is processed and matched, and the human body model is optimized; Finally, the realistic human body model is obtained with the rapid integration of the standard model and PCL library.展开更多
When human body is punched by boxing glove, both body surface and boxing glove deform in a complex shape. The purpose of this study is to develop a flexible sensor that can be used in such interface. Firstly, several ...When human body is punched by boxing glove, both body surface and boxing glove deform in a complex shape. The purpose of this study is to develop a flexible sensor that can be used in such interface. Firstly, several mechanical phenomena, which are the cause of the error signal of the sensor, are discussed. These are the influences of out-of-plane bending deformation, shear force caused by rubbing, shear force caused by the Poisson’s effect of contact material, and the lateral compressive force caused by the overhanging deformation of flexible material. Then, a prototype sensor that can eliminate the error factors of these is developed. The sensor is a distribution type impact sensor in which sixteen sensor elements are arranged in a 4 × 4 matrix. Punching experiments using a boxing glove are carried out by installing the sensor on the load cell, on the concrete wall and on the sandbag. From the experiment, it is found that the impact force can be measured with good accuracy by using the sensor. Despite the fact that the sensor has inadequate distribution number of sensor elements, the sensor structure meets mechanical requirements for the flexible impact sensor.展开更多
从实际需求出发,以红外热传感探头和树莓派为核心,组成基于红外传感原理的非接触式人体体温检测仪。红外传感探头采用MLX9064032×24 IR array为感测器件,其可从环境中获取尺寸为32×24的温度矩阵。通过红外探头获取数据,由树...从实际需求出发,以红外热传感探头和树莓派为核心,组成基于红外传感原理的非接触式人体体温检测仪。红外传感探头采用MLX9064032×24 IR array为感测器件,其可从环境中获取尺寸为32×24的温度矩阵。通过红外探头获取数据,由树莓派中运行的软件控制测温过程,并对数据进行读取、处理、可视化和异常告警。系统操作简单,数据直观,自动化程度较高,实现了非接触式快速测温,遥控测温,自动告警等功能,在大规模检疫防疫等场景下可发挥重要作用。展开更多
文摘Non-equilibrium thermal and biothermal radiation generated by heated solid materials and hematothermal living organisms are studied by water conductometric sensors. Engineering aspects and physical features of developed water conductometric sensors are given. Procedure and measuring technique are described. Our experiments show the anomalous behavior of water conductivity and associated differential parameters under water heating by biological objects compared with traditional heating sources. Water response to human action strongly depends on psychophysiological and psychoemotional state of the person. Moreover the responses to the action by left and right human hands are substantially different and as a rule are specific to the gender. The possible physicochemical mechanisms of such anomalous water behavior are studied. It is suggested that the observed effects are associated with resonant excitation of vibration-rotation energy levels of water under the influence of bioradiation generated by human organism consisting of approximately 70% water. The results obtained have good perspectives for future applications in different fields of human activity.
文摘Previous studies have reported that the mirror neuron system plays a crucial role in social cognition. We examined whether the higher-order cognitive functions are involved in the activations in the mirror neuron area when we perceive simplified pseudo-postures. We measured 14 participants’ brain activation during the posture-recognition task using near-infrared spectroscopy. The participants’ task was to observe five sequentially presented target pseudo-postures and judge whether a test pseudo-posture was identical to one of the preceding five target pseudo-postures. The results in the majority of participants (n = 10/14) revealed that the activity in the inferior frontal mirror neuron area is modulated by perception of human-likeness, but not in the remaining four participants (n = 4/14). These results suggest that the degree of the activation of higher-order cognitive functions, which may be engaged in the inhibitory and/or facilitative processing of human body or bodily movement, leads to the distinctive activities in the inferior frontal mirror neuron area.
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.
基金Supported by MOE(Ministry of Education in China)Project of Humanities and Social Sciences(No.13YJC890027)the National Natural Science Foundations of China(No.61003173)+1 种基金the Fundamental Research Funds for the Central Universities(No.2012ZZ0063)the Science and Technology Project of Guangzhou City(No.2012J4100002)
文摘The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, howev- er, are expensive, limiting the availability of 3D body models. In this paper, we focus on the human body 3D modeling using one Kinect sensor modeling method. To get the human body model fast, three steps in rapid modeling of the human body are carried out. Firstly, according to anthropometric parameters, the standard model is parameterized; Secondly, the Kinect depth image of the human body model is gotten through, then, by using the PCL library the point cloud data is processed and matched, and the human body model is optimized; Finally, the realistic human body model is obtained with the rapid integration of the standard model and PCL library.
文摘When human body is punched by boxing glove, both body surface and boxing glove deform in a complex shape. The purpose of this study is to develop a flexible sensor that can be used in such interface. Firstly, several mechanical phenomena, which are the cause of the error signal of the sensor, are discussed. These are the influences of out-of-plane bending deformation, shear force caused by rubbing, shear force caused by the Poisson’s effect of contact material, and the lateral compressive force caused by the overhanging deformation of flexible material. Then, a prototype sensor that can eliminate the error factors of these is developed. The sensor is a distribution type impact sensor in which sixteen sensor elements are arranged in a 4 × 4 matrix. Punching experiments using a boxing glove are carried out by installing the sensor on the load cell, on the concrete wall and on the sandbag. From the experiment, it is found that the impact force can be measured with good accuracy by using the sensor. Despite the fact that the sensor has inadequate distribution number of sensor elements, the sensor structure meets mechanical requirements for the flexible impact sensor.
文摘从实际需求出发,以红外热传感探头和树莓派为核心,组成基于红外传感原理的非接触式人体体温检测仪。红外传感探头采用MLX9064032×24 IR array为感测器件,其可从环境中获取尺寸为32×24的温度矩阵。通过红外探头获取数据,由树莓派中运行的软件控制测温过程,并对数据进行读取、处理、可视化和异常告警。系统操作简单,数据直观,自动化程度较高,实现了非接触式快速测温,遥控测温,自动告警等功能,在大规模检疫防疫等场景下可发挥重要作用。