Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been ...Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.展开更多
Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability ...Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.展开更多
AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy sub...AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy subjects (6 females and 6 males, mean age 24.9+0.7 years) were recruited to undergo three identical GE examinations. In six subjects the first two examinations were performed 2 d apart, and the third session was carried out at a median interval of 19.5 d (range 18 - 20 d) from the second one. In another six subjects the first two measurements were taken 20 d apart (median, range: 17-23 d), whereas the third session took place 2 d after the second one. Probes of expiratory air collected before and during six hours after intake of a solid meal (378 kcal) labelled with 75 μL (68 mg) 13^C-octanoic acid, were measured for 13^CO2 enrichment with the nondispersive isotopeselective infrared spectrometry NDIRS apparatus. RESULTS: Taking coefficients of variation for paired examinations into account, the short-term reproducibility of the GE measurement was slightly but not significantly better than the medium-term one: 7.7% and 11.2% for the lag phase (T-Lag), 7.3% and 10.9% for the gastric half emptying time (T1/2). The least differences in GE parameters detectable at P= 0.05 level in the 12 paired examinations were 9.6 and 15.6 min for T-Lag, 11.6 and 19.7 min for T1/2 by a two-day or two to three-week time gap, respectively CONCLUSION: The low-cost modification of the breath test involving a lower dose of 13^C-octanoic acid and NDIRS, renders good short- and medium-term reproducibility, as well as sensitivity of the measurement of gastric emptying of solids.展开更多
To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and nea...To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.展开更多
To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infra...To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.展开更多
This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The...This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.展开更多
This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed ci...This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.展开更多
The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the ...The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.展开更多
文摘Methanol oxidation reaction (MOR) at Pt and Pt electrode surface deposited with various amounts of Ru (denoted as PtxRuy, nominal coverage y is 0.17, 0.27, and 0.44 ML) in 0.1 mol/L HClO4+0.5 mol/L MeOH has been studied under potentiostatic conditions by in situ FTIR spectroscopy in attenuated-total-reflection con guration and di erential electro-chemical mass spectrometry under controlled flow conditions. Results reveal that (i) CO is the only methanol-related adsorbate observed by IR spectroscopy at all the Pt and PtRu electrodes examined at potentials from 0.3 V to 0.6 V (vs. RHE); (ii) at Pt0.56Ru0.44, two IR bands, one from CO adsorbed at Ru islands and the other from COL at Pt substrate are detected, while at other electrodes, only a single band for COL adsorbed at Pt is observed; (iii) MOR activity decreases in the order of Pt0.73Ru0.27〉Pt0.56Ru0.44〉Pt0.83Ru0.17〉Pt; (iv) at 0.5 V, MOR at Pt0.73Ru0.27 reaches a current e ciency of 50% for CO2 production, the turn-over frequency from CH3OH to CO2 is ca. 0.1 molecule/(site sec). Suggestions for further improving of PtRu catalysts for MOR are provided.
基金Project(2021MD703848) supported by the China Postdoctoral Science FoundationProjects(52174229, 52174230)supported by the National Natural Science Foundation of China+1 种基金Project(2021-KF-23-04) supported by the Natural Science Foundation of Liaoning Province,ChinaProject(2020CXNL10) supported by the Fundamental Research Funds for the Central Universities,China。
文摘Coal mine fires,which can cause heavy casualties,environmental damages and a waste of coal resources,have become a worldwide problem.Aiming at overcoming the drawbacks,such as a low analysis efficiency,poor stability and large monitoring error,of the existing underground coal fire monitoring technology,a novel monitoring system based on non-dispersive infrared(NDIR)spectroscopy is developed.In this study,first,the measurement principle of NDIR sensor,the gas concentration calculation and its temperature compensation algorithms were expounded.Next,taking CO and CH_(4) as examples,the liner correlation coefficients of absorbance and the temperature correction factors of the two indicator gases were calculated,and then the errors of concentration measurement for CO,CO_(2),CH_(4) and C_(2)H_(4) were further analyzed.The results disclose that the designed NDIR sensors can satisfy the requirements of industrial standards for monitoring the indicator gases for coal fire hazards.For the established NDIR-based monitoring system,the NDIRbased spectrum analyzer and its auxiliary equipment boast intrinsically safe and explosion-proof performances and can achieve real-time and in-situ detection of indicator gases when installed close to the coal fire risk area underground.Furthermore,a field application of the NDIR-based monitoring system in a coal mine shows that the NDIR-based spectrum analyzer has a permissible difference from the chromatography in measuring the concentrations of various indicator gases.Besides,the advantages of high accuracy,quick analysis and excellent security of the NDIR-based monitoring system have promoted its application in many coal mines.
基金Supported by a research grant(3 P05D 054 24)from the Ministry of Scientific Research and Information Technology(formerly:State Committee For Scientific Research)of the Republic of Poland-contract #0617/P05/2003/24
文摘AIM: To evaluate the reproducibility of a modified 13^C breath test-based measurement of solid phase gastric emptying (GE) within the frames of a simple-repeated measure study protocol. METHODS: Twelve healthy subjects (6 females and 6 males, mean age 24.9+0.7 years) were recruited to undergo three identical GE examinations. In six subjects the first two examinations were performed 2 d apart, and the third session was carried out at a median interval of 19.5 d (range 18 - 20 d) from the second one. In another six subjects the first two measurements were taken 20 d apart (median, range: 17-23 d), whereas the third session took place 2 d after the second one. Probes of expiratory air collected before and during six hours after intake of a solid meal (378 kcal) labelled with 75 μL (68 mg) 13^C-octanoic acid, were measured for 13^CO2 enrichment with the nondispersive isotopeselective infrared spectrometry NDIRS apparatus. RESULTS: Taking coefficients of variation for paired examinations into account, the short-term reproducibility of the GE measurement was slightly but not significantly better than the medium-term one: 7.7% and 11.2% for the lag phase (T-Lag), 7.3% and 10.9% for the gastric half emptying time (T1/2). The least differences in GE parameters detectable at P= 0.05 level in the 12 paired examinations were 9.6 and 15.6 min for T-Lag, 11.6 and 19.7 min for T1/2 by a two-day or two to three-week time gap, respectively CONCLUSION: The low-cost modification of the breath test involving a lower dose of 13^C-octanoic acid and NDIRS, renders good short- and medium-term reproducibility, as well as sensitivity of the measurement of gastric emptying of solids.
文摘To rapidly determine the pollution extent of wastewater, the calibration models were established for deter-mination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater by partial least squares and near infrared spectrometry of 120 samples. Spectral data preprocessing and outliers’ diagnosis were also discussed. Correlation coefficients of the models were 0.9542 and 0.9652, and the root mean square error of prediction (RMSEP) were 25.24 mg?L-1 and 12.13 mg?L-1 in the predicted range of 28.40~528.0 mg?L-1 and 16.0~305.2 mg?L-1 for Chemical Oxygen Demand and Biological Oxygen Demand, respectively. By statistical significance test, the results of determination were compared with those of stan-dard methods with no significant difference at 0.05 level. The method has been applied to simultaneous de-termination of Chemical Oxygen Demand and Biological Oxygen Demand in wastewater with satisfactory results.
文摘To obtain excellent performance optical fiber couplers, the structural difference of SiO2 in couplers with different manufacturing techniques was investigated. With 740-FT-IR infrared spectrometric analyzer, the infrared absorption spectrum of SiO2 in couplers at different drawing velocities was measured, and two characteristic peaks in the wavenumber range of 6502000 cm-1 were observed. One characteristic peak is at about 943 cm-1, which is (attributed) to Si—O—Si bond asymmetric stretching vibration, the other is at about 773 cm-1, which is attributed to (Si—O—Si) bond symmetric stretching vibration. From the infrared spectrum, it is found that the intensity and wavenumber of the characteristic peaks are related to the manufacturing technique of couplers. The characteristic peak at (about) 943 cm-1 becomes steeper when increasing the drawing velocity. At the drawing velocity of 150 μm/s, the distance between the two characteristic peaks is maximum, and then the optical fiber coupler has excellent performance, indicating that the performance of the optical fiber coupler has a close relationship with the wavenumber of the two characteristic peaks.
文摘This experiment studies on the used infrared spectroscopy to establish technology methods for liquor identification methods, as well as offers the science data for establishment of the fingerprint in white spirit. The results have shown that using near-infrared spectroscopy analysis of liquor has the obvious features such as strong specificity, good reproducibility, simple operation, and finally confirmed that it is an authentic and ideal method for identification in white spirit.
文摘This paper presents a new wireless system for the measurement of CO2 gas concentration for indoor and outdoor purposes based on low cost Non Dispersive Infrared sensors. The system has been implemented on a printed circuit board in order to obtain different aspects of the air pollution. Some experiments were achieved to evaluate the total system combined with an android application on a smartphone. Different tests were realized in a closed room nearly filled with students and also directly while driving on the road. Good results were obtained allowing a future use for air pollution mapping using numerous amounts of sensors inside vehicles.
基金supported by the National Natural Science Foundation of China(No.51874280)the Fundamental Research Funds for the Central Universities(No.2021ZDPY0211)+2 种基金the Graduate Innovation Program of China University of Mining and Technology(No.2023WLKXJ046)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_2811)the Project of Liaoning Provincial Department of Education(No.JYTMS20231458).
文摘The infrared radiation temperature(IRT)variation concerning stress and crack evolution of rocks is a critical focus in rock mechanics domain and engineering disaster warning.In this paper,a methodology to extract the key IRT features related to stress and crack evolution of loaded rocks is proposed.Specifically,the wavelet denoising and reconstruction in thermal image sequence(WDRTIS)method is employed to eliminate temporal noise in thermal image sequences.Subsequently,the adaptive partition temperature drift correction(APTDC)method is introduced to alleviate temperature drift.On this basis,the spatial noise correction method based on threshold segmentation and adaptive median filtering(OTSU-AMF)is proposed to extract the key IRT features associated with microcracks of loaded rocks.Following temperature drift correction,IRT provides an estimation of the thermoelastic factor in rocks,typically around 5.29×10^(-5) MPa^(-1) for sandstones.Results reveal that the high-temperature concentrated region in cumulative thermal images of crack evolution(TICE)can elucidate the spatiotemporal evolution of localized damage.Additionally,heat dissipation of crack evolution(HDCE)acquired from TICE quantifies the progressive failure process of rocks.The proposed methodology enhances the reliability of IRT monitoring results and provides an innovative approach for conducting research in rock mechanics and monitoring engineering disasters.