期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Infrared Small Target Detection Algorithm Based on ISTD-CenterNet
1
作者 Ning Li Shucai Huang Daozhi Wei 《Computers, Materials & Continua》 SCIE EI 2023年第12期3511-3531,共21页
This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the n... This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets. 展开更多
关键词 infrared small target detection CenterNet data enhancement feature enhancement attention mechanism
下载PDF
PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform
2
作者 Wenbo Li Qi Wang Shang Gao 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期921-938,共18页
Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.T... Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.To address the above challenges,we propose a modified You Only Look Once(YOLO)algorithm PF-YOLOv4-Tiny.The algorithm incorpo-rates spatial pyramidal pooling(SPP)and squeeze-and-excitation(SE)visual attention modules to enhance the target localization capability.The PANet-based-feature pyramid networks(P-FPN)are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy.To lighten the network,the standard convolutions other than the backbone network are replaced with depthwise separable convolutions.In post-processing the images,the soft-non-maximum suppression(soft-NMS)algorithm is employed to subside the missed and false detection problems caused by the occlusion between targets.The accuracy of our model can finally reach 61.75%,while the total Params is only 9.3 M and GFLOPs is 11.At the same time,the inference speed reaches 87 FPS on NVIDIA GeForce GTX 1650 Ti,which can meet the requirements of the infrared target detection algorithm for the embedded deployments. 展开更多
关键词 infrared target detection visual attention module spatial pyramid pooling dual-path feature fusion depthwise separable convolution soft-NMS
下载PDF
CAFUNeT:A small infrared target detection method in complex backgrounds
3
作者 孙海蓉 康莉 HUANG Jianjun 《中国体视学与图像分析》 2023年第4期332-348,共17页
Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect smal... Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets. 展开更多
关键词 small infrared target detection central difference convolution ASPP AF
下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
4
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
下载PDF
Novel detection method for infrared small targets using weighted information entropy 被引量:13
5
作者 Xiujie Qu He Chen Guihua Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期838-842,共5页
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g... This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection. 展开更多
关键词 infrared small target detection local mutation weight-ed information entropy (LMWIE) grey value of target adaptivethreshold.
下载PDF
An Effective Method of Threshold Selection for Small Object Image
6
作者 吴一全 吴加明 占必超 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期235-242,共8页
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ... The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property. 展开更多
关键词 information processing small infrared target detection image segmentation threshold selection 2-D histogram oblique segmentation fast recursive algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部