Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signa...Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score.展开更多
Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep L...Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep Learning(DL)-based fault diagnosis method becomes a hot topic.Convolutional Neural Network(CNN)is an effective DL method to extract the features of raw data automatically.This paper develops a fault diagnosis method using CNN for InfRared Thermal(IRT)image.First,IRT technique is utilized to capture the IRT images of rotating machinery.Second,the CNN is applied to extract fault features from the IRT images.In the end,the obtained features are fed into the Softmax Regression(SR)classifier for fault pattern identification.The effectiveness of the proposed method is validated using two different experimental data.Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method.展开更多
Gait is an essential biomedical feature that distinguishes individuals through walking.This feature automatically stimulates the need for remote human recognition in security-sensitive visual monitoring applications.H...Gait is an essential biomedical feature that distinguishes individuals through walking.This feature automatically stimulates the need for remote human recognition in security-sensitive visual monitoring applications.However,there is still a lack of sufficient accuracy of gait recognition at night,in addition to taking some critical factors that affect the performances of the recognition algorithm.Therefore,a novel approach is proposed to automatically identify individuals from thermal infrared(TIR)images according to their gaits captured at night.This approach uses a new night gait network(NGaitNet)based on similarity deep convolutional neural networks(CNNs)method to enhance gait recognition at night.First,the TIR image is represented via personal movements and enhanced body skeleton segments.Then,the state-space method with a Hough transform is used to extract gait features to obtain skeletal joints′angles.These features are trained to identify the most discriminating gait patterns that indicate a change in human identity.To verify the proposed method,the experimental results are performed by using learning and validation curves via being connected by the Visdom website.The proposed thermal infrared imaging night gait recognition(TIRNGaitNet)approach has achieved the highest gait recognition accuracy rates(99.5%,97.0%),especially under normal walking conditions on the Chinese Academy of Sciences Institute of Automation infrared night gait dataset(CASIA C)and Donghua University thermal infrared night gait database(DHU night gait dataset).On the same dataset,the results of the TIRNGaitNet approach provide the record scores of(98.0%,87.0%)under the slow walking condition and(94.0%,86.0%)for the quick walking condition.展开更多
Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective featu...Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability.展开更多
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac...It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.展开更多
In this paper, the characters of the ferrography and image recognitiontechnology are analyzed. The fault diagnosis system for the power device based on the ferrographyand image recognition technology is designed. At t...In this paper, the characters of the ferrography and image recognitiontechnology are analyzed. The fault diagnosis system for the power device based on the ferrographyand image recognition technology is designed. At the same time, the structure, the design andimplementing method, and the functions of each module of this system are described in detail.展开更多
文摘Roller bearing failure is one of the most common faults in rotating machines.Various techniques for bearing fault diagnosis based on faults feature extraction have been proposed.But feature extraction from fault signals requires expert prior information and human labour.Recently,deep learning algorithms have been applied extensively in the condition monitoring of rotating machines to learn features automatically from the input data.Given its robust performance in image recognition,the convolutional neural network(CNN)architecture has been widely used to learn automatically discriminative features from vibration images and classify health conditions.This paper proposes and evaluates a two-stage method RGBVI-CNN for roller bearings fault diagnosis.The first stage in the proposed method is to generate the RGB vibration images(RGBVIs)from the input vibration signals.To begin this process,first,the 1-D vibration signals were converted to 2-D grayscale vibration Images.Once the conversion was completed,the regions of interest(ROI)were found in the converted 2-D grayscale vibration images.Finally,to produce vibration images with more discriminative characteristics,an algorithm was applied to the 2-D grayscale vibration images to produce connected components-based RGB vibration images(RGBVIs)with sets of colours and texture features.In the second stage,with these RGBVIs a CNN-based architecture was employed to learn automatically features from the RGBVIs and to classify bearing health conditions.Two cases of fault classification of rolling element bearings are used to validate the proposed method.Experimental results of this investigation demonstrate that RGBVI-CNN can generate advantageous health condition features from bearing vibration signals and classify the health conditions under different working loads with high accuracy.Moreover,several classification models trained using RGBVI-CNN offered high performance in the testing results of the overall classification accuracy,precision,recall,and F-score.
基金supported by National Natural Science Foundation of China(No.51805434)in part by the China Postdoctoral Innovative Talent Plan,China(No.BX20180257)+1 种基金in part by the Postdoctoral Science Funds,China(No.2018M641021)in part by the Key Research Program,Shaanxi Province.
文摘Rotating machinery is widely applied in industrial applications.Fault diagnosis of rotating machinery is vital in manufacturing system,which can prevent catastrophic failure and reduce financial losses.Recently,Deep Learning(DL)-based fault diagnosis method becomes a hot topic.Convolutional Neural Network(CNN)is an effective DL method to extract the features of raw data automatically.This paper develops a fault diagnosis method using CNN for InfRared Thermal(IRT)image.First,IRT technique is utilized to capture the IRT images of rotating machinery.Second,the CNN is applied to extract fault features from the IRT images.In the end,the obtained features are fed into the Softmax Regression(SR)classifier for fault pattern identification.The effectiveness of the proposed method is validated using two different experimental data.Results show that the proposed method has a superior performance in identification various faults on rotor and bearings comparing with other deep learning models and traditional vibration-based method.
文摘Gait is an essential biomedical feature that distinguishes individuals through walking.This feature automatically stimulates the need for remote human recognition in security-sensitive visual monitoring applications.However,there is still a lack of sufficient accuracy of gait recognition at night,in addition to taking some critical factors that affect the performances of the recognition algorithm.Therefore,a novel approach is proposed to automatically identify individuals from thermal infrared(TIR)images according to their gaits captured at night.This approach uses a new night gait network(NGaitNet)based on similarity deep convolutional neural networks(CNNs)method to enhance gait recognition at night.First,the TIR image is represented via personal movements and enhanced body skeleton segments.Then,the state-space method with a Hough transform is used to extract gait features to obtain skeletal joints′angles.These features are trained to identify the most discriminating gait patterns that indicate a change in human identity.To verify the proposed method,the experimental results are performed by using learning and validation curves via being connected by the Visdom website.The proposed thermal infrared imaging night gait recognition(TIRNGaitNet)approach has achieved the highest gait recognition accuracy rates(99.5%,97.0%),especially under normal walking conditions on the Chinese Academy of Sciences Institute of Automation infrared night gait dataset(CASIA C)and Donghua University thermal infrared night gait database(DHU night gait dataset).On the same dataset,the results of the TIRNGaitNet approach provide the record scores of(98.0%,87.0%)under the slow walking condition and(94.0%,86.0%)for the quick walking condition.
基金supported by the Project of Shanghai Engineering Research Center for Intelligent Operation and Maintenance and Energy Efficiency Monitoring of Ships(No.20DZ2252300),China.
文摘Marine power-generation diesel engines operate in harsh environments.Their vibration signals are highly complex and the feature information exhibits a non-linear distribution.It is difficult to extract effective feature information from the network model,resulting in low fault-diagnosis accuracy.To address this problem,we propose a fault-diagnosis method that combines the Gramian angular field(GAF)with a convolutional neural network(CNN).Firstly,the vibration signals are transformed into 2D images by taking advantage of the GAF,which preserves the temporal correlation.The raw signals can be mapped to 2D image features such as texture and color.To integrate the feature information,the images of the Gramian angular summation field(GASF)and Gramian angular difference field(GADF)are fused by the weighted average fusion method.Secondly,the channel attention mechanism and temporal attention mechanism are introduced in the CNN model to optimize the CNN learning mechanism.Introducing the concept of residuals in the attention mechanism improves the feasibility of optimization.Finally,the weighted average fused images are fed into the CNN for feature extraction and fault diagnosis.The validity of the proposed method is verified by experiments with abnormal valve clearance.The average diagnostic accuracy is 98.40%.When−20 dB≤signal-to-noise ratio(SNR)≤20 dB,the diagnostic accuracy of the proposed method is higher than 94.00%.The proposed method has superior diagnostic performance.Moreover,it has a certain anti-noise capability and variable-load adaptive capability.
基金supported by China Southern Power Grid Co.Ltd.science and technology project(Research on the theory,technology and application of stereoscopic disaster defense for power distribution network in large city,GZHKJXM20180060)National Natural Science Foundation of China(No.51477100).
文摘It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method.
文摘In this paper, the characters of the ferrography and image recognitiontechnology are analyzed. The fault diagnosis system for the power device based on the ferrographyand image recognition technology is designed. At the same time, the structure, the design andimplementing method, and the functions of each module of this system are described in detail.