期刊文献+
共找到619篇文章
< 1 2 31 >
每页显示 20 50 100
A Novel Filtering-Based Detection Method for Small Targets in Infrared Images
1
作者 Sanxia Shi Yinglei Song 《Computers, Materials & Continua》 SCIE EI 2024年第11期2911-2934,共24页
Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ... Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution. 展开更多
关键词 Gaussian filtering infrared small target detection fuzzy C-means clustering ROBUSTNESS
下载PDF
Improved Weighted Local Contrast Method for Infrared Small Target Detection
2
作者 Pengge Ma Jiangnan Wang +3 位作者 Dongdong Pang Tao Shan Junling Sun Qiuchun Jin 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期19-27,共9页
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted... In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV). 展开更多
关键词 infrared small target unmanned aerial vehicles(UAV) local contrast target detection
下载PDF
Infrared Small Target Detection Algorithm Based on ISTD-CenterNet
3
作者 Ning Li Shucai Huang Daozhi Wei 《Computers, Materials & Continua》 SCIE EI 2023年第12期3511-3531,共21页
This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the n... This paper proposes a real-time detection method to improve the Infrared small target detection CenterNet(ISTD-CenterNet)network for detecting small infrared targets in complex environments.The method eliminates the need for an anchor frame,addressing the issues of low accuracy and slow speed.HRNet is used as the framework for feature extraction,and an ECBAM attention module is added to each stage branch for intelligent identification of the positions of small targets and significant objects.A scale enhancement module is also added to obtain a high-level semantic representation and fine-resolution prediction map for the entire infrared image.Besides,an improved sensory field enhancement module is designed to leverage semantic information in low-resolution feature maps,and a convolutional attention mechanism module is used to increase network stability and convergence speed.Comparison experiments conducted on the infrared small target data set ESIRST.The experiments show that compared to the benchmark network CenterNet-HRNet,the proposed ISTD-CenterNet improves the recall by 22.85%and the detection accuracy by 13.36%.Compared to the state-of-the-art YOLOv5small,the ISTD-CenterNet recall is improved by 5.88%,the detection precision is improved by 2.33%,and the detection frame rate is 48.94 frames/sec,which realizes the accurate real-time detection of small infrared targets. 展开更多
关键词 infrared small target detection CenterNet data enhancement feature enhancement attention mechanism
下载PDF
CAFUNeT:A small infrared target detection method in complex backgrounds
4
作者 孙海蓉 康莉 HUANG Jianjun 《中国体视学与图像分析》 2023年第4期332-348,共17页
Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect smal... Small infrared target detection has widespread applications in various fields including military,aviation,and medicine.However,detecting small infrared targets in complex backgrounds remains challenging.To detect small infrared targets,we propose a variable-structure U-shaped network referred as CAFUNet.A central differential convolution-based encoder,ASPP,an Attention Fusion module,and a decoder module are the critical components of the CAFUNet.The encoder module based on central difference convolution effectively extracts shallow detail information from infrared images,complemented by rich contextual information obtained from the deep features in the decoder module.However,the direct fusion of the shallow detail features with semantic features may lead to feature mismatch.To address this,we incorporate an Attention Fusion(AF)module to enhance the network performance further.We performed ablation studies on each module to evaluate its effectiveness.The results show that our proposed algorithm outperforms the state-of-the-art methods on publicly available datasets. 展开更多
关键词 small infrared target detection central difference convolution ASPP AF
下载PDF
Novel detection method for infrared small targets using weighted information entropy 被引量:13
5
作者 Xiujie Qu He Chen Guihua Peng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第6期838-842,共5页
This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the g... This paper presents a method for detecting the small infrared target under complex background. An algorithm, named local mutation weighted information entropy (LMWIE), is proposed to suppress background. Then, the grey value of targets is enhanced by calculating the local energy. Image segmentation based on the adaptive threshold is used to solve the problems that the grey value of noise is enhanced with the grey value improvement of targets. Experimental results show that compared with the adaptive Butterworth high-pass filter method, the proposed algorithm is more effective and faster for the infrared small target detection. 展开更多
关键词 infrared small target detection local mutation weight-ed information entropy (LMWIE) grey value of target adaptivethreshold.
下载PDF
Using deep learning to detect small targets in infrared oversampling images 被引量:15
6
作者 LIN Liangkui WANG Shaoyou TANG Zhongxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期947-952,共6页
According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extrac... According to the oversampling imaging characteristics, an infrared small target detection method based on deep learning is proposed. A 7-layer deep convolutional neural network(CNN) is designed to automatically extract small target features and suppress clutters in an end-to-end manner. The input of CNN is an original oversampling image while the output is a cluttersuppressed feature map. The CNN contains only convolution and non-linear operations, and the resolution of the output feature map is the same as that of the input image. The L1-norm loss function is used, and a mass of training data is generated to train the network effectively. Results show that compared with several baseline methods, the proposed method improves the signal clutter ratio gain and background suppression factor by 3–4 orders of magnitude, and has more powerful target detection performance. 展开更多
关键词 infrared small target detection OVERSAMPLING deep learning convolutional neural network(CNN)
下载PDF
A pixel-level local contrast measure for infrared small target detection 被引量:4
7
作者 Zhao-bing Qiu Yong Ma +3 位作者 Fan Fan Jun Huang Ming-hui Wu Xiao-guang Mei 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1589-1601,共13页
Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregul... Infrared(IR) small target detection is one of the key technologies of infrared search and track(IRST)systems. Existing methods have some limitations in detection performance, especially when the target size is irregular or the background is complex. In this paper, we propose a pixel-level local contrast measure(PLLCM), which can subdivide small targets and backgrounds at pixel level simultaneously.With pixel-level segmentation, the difference between the target and the background becomes more obvious, which helps to improve the detection performance. First, we design a multiscale sliding window to quickly extract candidate target pixels. Then, a local window based on random walker(RW) is designed for pixel-level target segmentation. After that, PLLCM incorporating probability weights and scale constraints is proposed to accurately measure local contrast and suppress various types of background interference. Finally, an adaptive threshold operation is applied to separate the target from the PLLCM enhanced map. Experimental results show that the proposed method has a higher detection rate and a lower false alarm rate than the baseline algorithms, while achieving a high speed. 展开更多
关键词 infrared(ir)small target irregular size Random walker(RW) Pixel-level local contrast measure(PLLCM)
下载PDF
Dim Moving Small Target Detection by Local and Global Variance Filtering on Temporal Profiles in Infrared Sequences
8
作者 Chen Hao Liu Delian 《航空兵器》 CSCD 北大核心 2019年第6期43-49,共7页
In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on tempo... In this paper, the temporal different characteristics between the target and background pixels are used to detect dim moving targets in the slow-evolving complex background. A local and global variance filter on temporal profiles is presented that addresses the temporal characteristics of the target and background pixels to eliminate the large variation of background temporal profiles. Firstly, the temporal behaviors of different types of image pixels of practical infrared scenes are analyzed.Then, the new local and global variance filter is proposed. The baseline of the fluctuation level of background temporal profiles is obtained by using the local and global variance filter. The height of the target pulse signal is extracted by subtracting the baseline from the original temporal profiles. Finally, a new target detection criterion is designed. The proposed method is applied to detect dim and small targets in practical infrared sequence images. The experimental results show that the proposed algorithm has good detection performance for dim moving small targets in the complex background. 展开更多
关键词 small target detection infrared image sequences complex background temporal profile variance filtering
下载PDF
Infrared Image Small Target Detection Based on Bi-orthogonal Wavelet and Morphology
9
作者 迟健男 张朝晖 +1 位作者 王东署 郝彦爽 《Defence Technology(防务技术)》 SCIE EI CAS 2007年第3期203-208,共6页
An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical... An image multi-scale edge detection method based on anti-symmetrical bi-orthogonal wavelet is given in theory. Convolution operation property and function as a differential operator are analyzed,which anti-symmetrical bi-orthogonal wavelet transform have. An algorithm for wavelet reconstruction in which multi-scale edge can be detected is put forward. Based on it, a detection method for small target in infrared image with sea or sky background based on the anti-symmetrical bi-orthogonal wavelet and morphology is proposed. The small target detection is considered as a process in which structural background is removed, correlative background is suppressed, and noise is restrained. In this approach, the multi-scale edge is extracted by means of the anti-symmetrical bi-orthogonal wavelet decomposition. Then, module maximum chains formed by complicated background of clouds, sea wave and sea-sky-line are removed, and the image background becomes smoother. Finally, the morphology based edge detection method is used to get small target and restrain undulate background and noise. Experiment results show that the approach can suppress clutter background and detect the small target effectively. 展开更多
关键词 控制导航系统 航天器 边缘方向 红外线图像 小目标探测
下载PDF
Infrared modeling and imaging simulation of midcourse ballistic targets based on strap-down platform 被引量:2
10
作者 Changzhen Qiu Zhiyong Zhang +1 位作者 Huanzhang Lu Kaifeng Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期776-785,共10页
An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging f... An infrared (IR) imaging simulation framework based on the strap-down platform is proposed for midcourse ballistic targets. It overcomes the shortcoming of the existing algorithms, which cannot simulate IR imaging from the entire midcourse process. The proposed framework includes three steps, target characteristic modeling, motion modeling, and imaging modeling. In imaging modeling, the staring focal plane is taken into account due to its wide employment. In order to obtain IR images of high fidelity, especially that the fluctuation of the target signal-to-noise ratio (SNR) is reasonably similar to the actual one, this paper proposes an improved IR imaging simulation method. The proposed method considers two critical factors of the pixel plane, occupy-empty ratio and defect elements, which affect the imaging of targets markedly but are neglected in previous work. Finally, the IR image sequence of high fidelity is obtained. And the correlative parameters of simulation can be set according to the given scene. Thus the generated images can satisfy the needs of algorithms validation for tracking and recognition. 展开更多
关键词 strap-down platform midceurse ballistic target infrared (ir staring focal plane.
下载PDF
Micro-motion dynamics analysis of ballistic targets based on infrared detection 被引量:1
11
作者 Junliang Liu Yanfang Li +2 位作者 Shangfeng Chen Huanzhang Lu Bendong Zhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第3期472-480,共9页
The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore w... The dynamic characteristics related to micro-motions, such as mechanical vibration or rotation, play an essential role in classifying and recognizing ballistic targets in the midcourse, and recent researches explore ways of extracting the micro-motion features from radar signals of ballistic targets. In this paper, we focus on how to investigate the micro-motion dynamic characteristics of the ballistic targets from the signals based on infrared (IR) detection, which is mainly achieved by analyzing the periodic fluctuation characteristics of the target IR irradiance intensity signatures. Simulation experiments demonstrate that the periodic characteristics of IR signatures can be used to distinguish different micro motion types and estimate related parameters. Consequently, this is possible to determine the micro-motion dynamics of ballistic targets based on IR detection. 展开更多
关键词 micro-motion dynamics infrared (ir) signatures target recognition parameters estimation
下载PDF
A Small Target Detection Method for Sea Surface Based on Guided Filtering and Local Mean Gray Difference
12
作者 Dongming Lu Mengke Wang +5 位作者 Xinxin Yang Longyin Teng Jiangyun Tan Zechen Tian Liping Wang Guohua Gu 《Journal of Computer and Communications》 2023年第12期49-63,共15页
The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local avera... The traditional small target detection algorithm often results in a high false alarm rate on the sea surface background. To address this issue, a small target detection method based on guided filtering and local average gray level difference was proposed in this paper for the sea surface. Firstly, the method enhanced the details of the small targets by employing guided filtering to suppress the background clutter and noise in the sea surface image. Subsequently, the local average gray level difference of each point in the image was calculated to further distinguish the targets from other interference points. Finally, the threshold segmentation method was utilized to obtain the actual small targets on the sea surface. After conducting experiments on various sea surface scenes, the LSCRG, BSF, and ROC curve were computed for the proposed method and five other algorithms. Comparative analysis with BS, Top-hat, TDLMS, Max-median, and LCM demonstrates the superiority of the proposed method for infrared small target detection on the sea surface. 展开更多
关键词 Sea Surface infrared small targets Guided Filtering Detail Enhancement
下载PDF
Multi-Channel Based on Attention Network for Infrared Small Target Detection
13
作者 张彦军 王碧云 蔡云泽 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第3期414-427,共14页
Infrared detection technology has the advantages of all-weather detection and good concealment,which is widely used in long-distance target detection and tracking systems.However,the complex background,the strong nois... Infrared detection technology has the advantages of all-weather detection and good concealment,which is widely used in long-distance target detection and tracking systems.However,the complex background,the strong noise,and the characteristics of small scale and weak intensity of targets bring great difficulties to the detection of infrared small targets.A multi-channel based on attention network is proposed in this paper,aimed at the problem of high missed detection rate and false alarm rate of traditional algorithms and the problem of large model,high complexity and poor detection performance of deep learning algorithms.First,given the difficulty in extracting the features of infrared multiscale and small dim targets,the multiple channels are designed based on dilated convolution to capture multiscale target features.Second,the coordinate attention block is incorporated in each channel to suppress background clutters adaptively and enhance target features.In addition,the fusion of shallow detail features and deep abstract semantic features is realized by synthesizing the contextual attention fusion block.Finally,it is verified that,compared with other state-of-the-art methods based on the datasets SIRST and MDFA,the proposed algorithm further improves the detection effect,and the model size and computational complexity are smaller. 展开更多
关键词 infrared image small target detection deep learning attention mechanism feature fusion
原文传递
改进YOLOv5的轻量化RGB-IR融合小目标检测
14
作者 郭月飞 阳旭 葛晨阳 《办公自动化》 2024年第17期65-68,共4页
针对RGB-IR图像中的目标检测问题,文章提出一种基于YOLOv5的轻量化RGB-IR融合小目标检测算法。该算法首先使用单应性变换对齐RGB与IR图像,并拼接为四通道张量输入检测网络,以实现联合特征提取。其次,使用SE注意力机制分配特征通道权重,... 针对RGB-IR图像中的目标检测问题,文章提出一种基于YOLOv5的轻量化RGB-IR融合小目标检测算法。该算法首先使用单应性变换对齐RGB与IR图像,并拼接为四通道张量输入检测网络,以实现联合特征提取。其次,使用SE注意力机制分配特征通道权重,以实现特征级融合,减少特征矛盾并提高检测的鲁棒性,并进一步改进网络连接,使用浅层特征以增强小目标检测准确性。最后,使用Ghost卷积替代传统卷积,以降低计算量与参数量。实验结果表明,该融合检测算法在小目标数据集上验证改进结果明显,并实现嵌入式部署验证,在2TOPS算力NPU上实现30fps帧率的实时检测。 展开更多
关键词 RGB-ir融合目标检测 小目标检测 YOLOv5 模型轻量化 注意力机制
下载PDF
Infrared Image Target Segmentation Processing Based On Space-Time Combination 被引量:3
15
作者 Chuanwen Liu 《通讯和计算机(中英文版)》 2006年第3期102-108,共7页
下载PDF
Adversarial Defense Technology for Small Infrared Targets
16
作者 Tongan Yu Yali Xue +2 位作者 Yiming He Shan Cui Jun Hong 《Computers, Materials & Continua》 SCIE EI 2024年第10期1235-1250,共16页
With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perce... With the rapid development of deep learning-based detection algorithms,deep learning is widely used in the field of infrared small target detection.However,well-designed adversarial samples can fool human visual perception,directly causing a serious decline in the detection quality of the recognition model.In this paper,an adversarial defense technology for small infrared targets is proposed to improve model robustness.The adversarial samples with strong migration can not only improve the generalization of defense technology,but also save the training cost.Therefore,this study adopts the concept of maximizing multidimensional feature distortion,applying noise to clean samples to serve as subsequent training samples.On this basis,this study proposes an inverse perturbation elimination method based on Generative Adversarial Networks(GAN)to realize the adversarial defense,and design the generator and discriminator for infrared small targets,aiming to make both of them compete with each other to continuously improve the performance of the model,find out the commonalities and differences between the adversarial samples and the original samples.Through experimental verification,our defense algorithm is not only able to cope with multiple attacks but also performs well on different recognition models compared to commonly used defense algorithms,making it a plug-and-play efficient adversarial defense technique. 展开更多
关键词 Adversarial defense adversarial robustness small infrared targets transferable perturbation GAN
下载PDF
基于YOLOv5s的改进实时红外小目标检测 被引量:1
17
作者 谷雨 张宏宇 彭冬亮 《激光与红外》 CAS CSCD 北大核心 2024年第2期281-288,共8页
针对红外图像分辨率低、背景复杂、目标细节特征缺失等问题,提出了一种基于YOLOv5s的改进实时红外小目标检测模型Infrared-YOLOv5s。在特征提取阶段,采用SPD-Conv进行下采样,将特征图切分为特征子图并按通道拼接,避免了多尺度特征提取... 针对红外图像分辨率低、背景复杂、目标细节特征缺失等问题,提出了一种基于YOLOv5s的改进实时红外小目标检测模型Infrared-YOLOv5s。在特征提取阶段,采用SPD-Conv进行下采样,将特征图切分为特征子图并按通道拼接,避免了多尺度特征提取过程中下采样导致的特征丢失情况,设计了一种基于空洞卷积的改进空间金字塔池化模块,通过对具有不同感受野的特征进行融合来提高特征提取能力;在特征融合阶段,引入由深到浅的注意力模块,将深层特征语义特征嵌入到浅层空间特征中,增强浅层特征的表达能力;在预测阶段,裁减了网络中针对大目标检测的特征提取层、融合层及预测层,降低模型大小的同时提高了实时性。首先通过消融实验验证了提出各模块的有效性,实验结果表明,改进模型在SIRST数据集上平均精度均值达到了95.4%,较原始YOLOv5s提高了2.3%,且模型大小降低了72.9%,仅为4.5 M,在Nvidia Xavier上推理速度达到28 f/s,利于实际的部署和应用。在Infrared-PV数据集上的迁移实验进一步验证了改进算法的有效性。提出的改进模型在提高红外图像小目标检测性能的同时,能够满足实时性要求,因而适用于红外图像小目标实时检测任务。 展开更多
关键词 红外小目标检测 YOLOv5s 注意力机制 特征融合
下载PDF
基于跨越连接与融合注意力机制的红外弱小目标检测方法
18
作者 李慧 李正周 +2 位作者 杨雨昕 郝聪宇 刘海涛 《光子学报》 EI CAS CSCD 北大核心 2024年第9期218-229,共12页
针对复杂背景红外小弱目标信号弱、特征不明显、干扰虚警多等检测性能低问题,提出基于跨越连接与融合注意力机制的单阶段红外弱小目标检测算法。该方法融合注意力机制与残差网络提取小目标多特征,减少复杂背景干扰;双向跨越连接结构融... 针对复杂背景红外小弱目标信号弱、特征不明显、干扰虚警多等检测性能低问题,提出基于跨越连接与融合注意力机制的单阶段红外弱小目标检测算法。该方法融合注意力机制与残差网络提取小目标多特征,减少复杂背景干扰;双向跨越连接结构融合低层与高层各自的特征信息,凸显小弱目标特征表达能力;增加一个高分辨率检测层,重新聚类弱小目标先验框,增强目标与背景的特征差别学习能力;最后,建立真实目标和预测目标框的高斯分布模型,计算两者相似性,解决因IoU度量造成的目标损失回归偏差敏感问题,提升损失回归准确性。在公开红外小目标数据集上进行对比测试,实验结果表明该算法对多种复杂背景下红外小弱目标检测均取得了最佳性能,在平均精度和速度等方面都得到显著提升,模型最小,方便部署。 展开更多
关键词 红外小目标 目标检测 跨越连接 注意力机制 多尺度融合
下载PDF
基于FACET滤波加权局部对比度的红外小目标检测
19
作者 马鹏阁 王招鹏 +2 位作者 王江南 钱金旺 孙俊灵 《电光与控制》 CSCD 北大核心 2024年第12期27-32,共6页
针对低空复杂背景下红外图像中目标与背景对比度低、边缘高亮的问题,提出一种基于FACET滤波加权局部对比度的红外小目标检测算法。首先,通过FACET滤波运算获取目标候选像素;然后,利用目标区域和背景区域灰度差异的比率计算局部对比度,... 针对低空复杂背景下红外图像中目标与背景对比度低、边缘高亮的问题,提出一种基于FACET滤波加权局部对比度的红外小目标检测算法。首先,通过FACET滤波运算获取目标候选像素;然后,利用目标区域和背景区域灰度差异的比率计算局部对比度,同时基于目标和背景的异质性设计了一种加权函数,用来增强目标显著性和抑制背景;最后,通过自适应阈值分割提取真实的目标。在5组真实红外小目标图像数据集上与不同的算法进行性能比较分析,实验结果表明,提出的算法在不同低空复杂场景中具有较好的检测性能。 展开更多
关键词 红外小目标 FACET滤波 局部对比度 加权函数
下载PDF
HRformer:基于多级回归Transformer网络的红外小目标检测
20
作者 杜妮妮 单凯东 王建超 《红外技术》 CSCD 北大核心 2024年第2期199-207,共9页
红外小目标检测是指从低信噪比、复杂背景的红外图像中对小目标进行检测,在海上救援、交通管理等应用中具有重要实际意义。然而,由于图像分辨率低、目标尺寸小以及特征不突出等因素,导致红外目标很容易淹没在包含噪声和杂波的背景中,如... 红外小目标检测是指从低信噪比、复杂背景的红外图像中对小目标进行检测,在海上救援、交通管理等应用中具有重要实际意义。然而,由于图像分辨率低、目标尺寸小以及特征不突出等因素,导致红外目标很容易淹没在包含噪声和杂波的背景中,如何精确检测红外小目标的外形信息仍然是一个挑战。针对上述问题,构建了一种基于多级回归Transformer(HRformer)网络的红外小目标检测算法。具体来说,首先为了在获得多尺度信息的同时尽可能避免原始图像信息的损失,采用像素逆重组(PixelUnShuffle)操作对原始图像下采样来获取不同层级网络的输入,同时采用一种可学习的像素重组(PixelShuffle)操作对每一层级的输出特征图进行上采样,提升了网络的灵活性;接着,为实现网络中不同层级特征之间的信息交互,本文设计了一种包含空间注意力计算分支以及通道注意力计算分支在内的交叉注意力融合(cross attention fusion,CAF)模块实现特征高效融合以及信息互补;最后,为进一步提升网络的检测性能,结合普通Transformer结构具有较大感受野以及基于窗口的Transformer结构具有较少计算复杂度的优势,提出了一种局部-全局Transformer(LGT)结构,能够在提取局部上下文信息的同时对全局依赖关系进行建模,计算成本也得到节省。实验结果表明,与目前较为先进的一些红外小目标检测算法相比,本文所提出的算法具有更高的检测精度,同时具有较少的参数量,在解决实际问题中更有意义。 展开更多
关键词 红外图像 弱小目标检测 TRANSFORMER 图像分割
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部