Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.8...Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.87%can be successfully made using this new technique at 800℃.In hot-rolling process,Cu phases are closely surrounded by W particles under the rolling stress to form a network microstructure,thus making significant increase in electrical and thermal conductivity up to53.00%and 24.44%,respectively.Transverse and longitudinal hardness of the W–Cu sheets significantly increase due to the enhanced densification and deformation strength.Similar to that of the raw materials,three fracture types were observed in the hot-rolled materials,i.e.,ductile fracture of Cu binding phases,trans-granular fracture of W phases,and W–W interfacial fracture.展开更多
Numerical simulation on microstructural evolution during multipass hot rolling of aluminum alloys was performed by using DEFORM TM software and incorporating Zener Hollomon parameter Z . The distributions of equivalen...Numerical simulation on microstructural evolution during multipass hot rolling of aluminum alloys was performed by using DEFORM TM software and incorporating Zener Hollomon parameter Z . The distributions of equivalent stress, equivalent strain, equivalent strain rate and temperature, as well as the distribution of recrystallization fraction through the thickness of deformed specimen during multipass hot rolling of 5182 aluminum alloy, were all calculated. The results agree well with the metallographic examination of the deformed specimen on Gleeble 1500. [展开更多
Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flex...Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has ...The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.展开更多
To establish the rolling plan of cold-rolling flattening set is very complicated,it is restrained by several constraints of rolling schedule.Operator's subjective and other human factors also affect the rationalit...To establish the rolling plan of cold-rolling flattening set is very complicated,it is restrained by several constraints of rolling schedule.Operator's subjective and other human factors also affect the rationality of plan arrangement seriously.Its result causes many abuses such as overusing transition strip,high-frequent roller switching,no-fully utilization of rollers,low arrangement rate of the plan.Therefore,we have initially developed a practical optimization model of rolling plan and schedule,which could be established and optimized by computer automatically,and a dynamic alignment module which have friendly UI according to the experience of operators.They have greatly enhanced the system usability.This system takes full advantage of relationship between the roller roughness and the rolling weight,reasonably arranges rolling based on different roughness demand,effectively enhances the use factor of roller and the smooth quality of steel string coil. A practical and effective scheduling optimization algorithm and rolling scheduling optimization applications system was developed based on the study of mixed hot rolling scheduling optimization model of carbon steel,stainless steel,stainless steel and carbon steel cross-rolling.The online application indicates that the model and algorithm is designed reasonable,practical and effective.This model system can significantly improve the scheduling efficiency and quality and it's also very positive in reducing heating energy consumption,enhancing the volume of units rolling plan,and optimizing the production of hot-rolled unit organization and planning and scheduling.展开更多
This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile...This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.展开更多
The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (...The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.展开更多
Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructur...Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.展开更多
In order to improve the quality of clad ingots, diverse physical fields including electromagnetic stirring, power ultrasonic and compound field of ultrasonic and electromagnetic stirring were attempted to prepare clad...In order to improve the quality of clad ingots, diverse physical fields including electromagnetic stirring, power ultrasonic and compound field of ultrasonic and electromagnetic stirring were attempted to prepare clad ingots of 3003/4004 alloys. The solidification structures near the interface in clad ingots were investigated. The experiment results indicate that the solidification structure of 4004 alloy changes from dendritic crystals to petal-like grains when the clad ingot is treated by electromagnetic stirring. With the effect of power ultrasonic, the solidified microstructure of 4004 alloy exhibits the refinement of both primary a(A1) and eutectic silicon. Under the compound field, the primary a(A1) is refined, the morphology of eutectic silicon has a transition from a coarse plate-like form without treatment or thin acicular-like form with power ultrasonic to fine coral-like form.展开更多
A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on t...A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are per- formed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified.展开更多
Two kinds of argon shroud protection devices with two different basic structures were designed and investigated. Industrial experiments and numerical simulations were used to examine the protection effect, and the mec...Two kinds of argon shroud protection devices with two different basic structures were designed and investigated. Industrial experiments and numerical simulations were used to examine the protection effect, and the mechanism of air entrapment during the casting of steel ingots was analyzed. The influence of the structure of the argon shroud protection device on the protection effect was investigated. An argon shroud protection device mounted to the nozzle holder on the bottom of the ladle does not provide a good protection effect because air can easily flow into the teeming system and cause reoxidation of molten steel during teeming. By contrast, an argon shroud protection device seated on the top of the central trumpet provides an excellent protection effect, where air has little chance of flowing into the teeming system during casting. The feasibilities of the argon shroud protection devices are discussed.展开更多
The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which wa...The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.展开更多
In this paper,a large-sized ingot of Mg–9Gd–3Y–1.5Zn–0.5Zr(wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method.The alloy was subsequently annealed at a relatively l...In this paper,a large-sized ingot of Mg–9Gd–3Y–1.5Zn–0.5Zr(wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method.The alloy was subsequently annealed at a relatively low temperature of 430°C for 12 h as a homogenization treatment.The microstructure and room-temperature mechanical properties of the alloy were investigated systematically.The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18 R long-period stacking ordered(LPSO) phases with a composition of Mg10 Zn Y and an α-Mg matrix,along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries.Most of the eutectic compounds dissolved after the homogenization treatment.Moreover,the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment.The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd).The mechanical properties of the heat-treated large-sized alloy ingot are uniform.The ultimate tensile strength(UTS) and tensile yield strength(TYS) of the alloy reached 207.2 MPa and 134.8 MPa,respectively,and the elongation was 3.4%.The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.展开更多
Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production...Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.展开更多
Macrosegregation is the major defect in large steel ingots caused by solute partitioning and melt convection during casting.In this study,a three-phase(liquid,columnar dendrites,and equiaxed grains)model is proposed t...Macrosegregation is the major defect in large steel ingots caused by solute partitioning and melt convection during casting.In this study,a three-phase(liquid,columnar dendrites,and equiaxed grains)model is proposed to simulate macrosegregation in a 36-t steel ingot.A supplementary set of conservation equations are employed in the model such that two types of equiaxed grains,either settling or adhering to the solid shell,are well simulated.The predicted concentration agrees quantitatively with the experimental value.A negative segregation cone was located at the bottom owing to the grain settlement and solute-enriched melt leaving from the mushy zone.The interdendritic liquid flow was carefully analyzed,and the formation of A-type segregations in the mid-height of the ingot is discussed.Negative segregation was observed near the riser neck due to the specific relationship between flow direction and temperature gradient.Additionally,the as-cast macrostructure of the ingot is presented,including the grain size distribution and columnar–equiaxed transition.展开更多
The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool re...The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool remains unchanged when the height of ingot is approximately 2.5-3 times the thickness of slab ingot. The change in the shape of pool is found to be strongly dependent on the pattern of melting rate, and hence, the power input; the depth of the molten pool increases with the increase in melting speed. It is concluded that a transient heat transfer model has to be used to obtain reliable input information for the entire, operatina time.展开更多
A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation softwar...A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation software which concurrently solves the macro-scopic mass, momentum, energy and species conservation equations has been developedby applying the SIMPLE algorithm.The thermo--solutal convection in a NH_4 Cl--H_2O ingot is verified and the result showsgood agreement with that reported. Then macro--segregation in a steel ingot is simu-lated by using the developed program. The steel ingot is in a rectangular mold with ariser. The fluid flow is mainly induced by the temperature field and the solid fraction.The macro--segregation pattern is mainly affected by the thermo--induced convectionin the mushy zone. The negative segregation forms along the walls of the casting.The positive segregation forms at the top center of the casting into the riser. Thespecies concentration reaches the peak in the center of the ingot where solidificationends lastly.展开更多
Pulse Electric Discharging (PED) is a novel technique that can modify solidifying structure and reduce grain size. ItS effectsapplied to the high carbon liquid steel were presented here. The macrostructure and microst...Pulse Electric Discharging (PED) is a novel technique that can modify solidifying structure and reduce grain size. ItS effectsapplied to the high carbon liquid steel were presented here. The macrostructure and microstructure of the high carbon alloy steel werealso observed. Results show that (1 ) the length of columnar crystal at the edge of ingot without PED treatment is much longer than thatwith PED, and (2) the perlite lamellae of steel billets after deposed by PED are twisted and shortened. An explanation of those experimental results is given.展开更多
The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed dur...The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.展开更多
基金supported by the National Natural Science Foundation of China (No. 50834003)
文摘Multi-pass hot-rolling technique was used to fabricate W80Cu20 alloy,and its properties were characterized in this paper.Results show that the W-Cu alloy sheets with a thickness of 0.5 mm and a relative density of99.87%can be successfully made using this new technique at 800℃.In hot-rolling process,Cu phases are closely surrounded by W particles under the rolling stress to form a network microstructure,thus making significant increase in electrical and thermal conductivity up to53.00%and 24.44%,respectively.Transverse and longitudinal hardness of the W–Cu sheets significantly increase due to the enhanced densification and deformation strength.Similar to that of the raw materials,three fracture types were observed in the hot-rolled materials,i.e.,ductile fracture of Cu binding phases,trans-granular fracture of W phases,and W–W interfacial fracture.
文摘Numerical simulation on microstructural evolution during multipass hot rolling of aluminum alloys was performed by using DEFORM TM software and incorporating Zener Hollomon parameter Z . The distributions of equivalent stress, equivalent strain, equivalent strain rate and temperature, as well as the distribution of recrystallization fraction through the thickness of deformed specimen during multipass hot rolling of 5182 aluminum alloy, were all calculated. The results agree well with the metallographic examination of the deformed specimen on Gleeble 1500. [
文摘Taking the seamless tube plant of Baoshan Iron & Steel Complex in China as the background,we analyze the characters of hot rolling seamless steel tube:multi varieties,low volume,complicated production process,flexible production routes.Then integrated scheduling problem for hot rolling seamless steel tube production is studied,which covers two key points;order-grouping problem and solution method for flowshop/jobshop scheduling problem.On the basis of these two problems,integrated scheduling decision system is developed.The design idea,function flow sheet,data processing method,and functional module of visualized human-computer interactive scheduling system implemented in seamless steel tube plant of Shanghai Baoshan Iron & Steel Complex are described into detail.Compared with manual system,the performance of system shows the applicability and superiority in several criteria.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
文摘The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.
文摘To establish the rolling plan of cold-rolling flattening set is very complicated,it is restrained by several constraints of rolling schedule.Operator's subjective and other human factors also affect the rationality of plan arrangement seriously.Its result causes many abuses such as overusing transition strip,high-frequent roller switching,no-fully utilization of rollers,low arrangement rate of the plan.Therefore,we have initially developed a practical optimization model of rolling plan and schedule,which could be established and optimized by computer automatically,and a dynamic alignment module which have friendly UI according to the experience of operators.They have greatly enhanced the system usability.This system takes full advantage of relationship between the roller roughness and the rolling weight,reasonably arranges rolling based on different roughness demand,effectively enhances the use factor of roller and the smooth quality of steel string coil. A practical and effective scheduling optimization algorithm and rolling scheduling optimization applications system was developed based on the study of mixed hot rolling scheduling optimization model of carbon steel,stainless steel,stainless steel and carbon steel cross-rolling.The online application indicates that the model and algorithm is designed reasonable,practical and effective.This model system can significantly improve the scheduling efficiency and quality and it's also very positive in reducing heating energy consumption,enhancing the volume of units rolling plan,and optimizing the production of hot-rolled unit organization and planning and scheduling.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0707300)the Key Research and Development Program projects of Shandong(No.2020CXGC010304).
文摘This work aims to investigate the mechanical properties and interfacial characteristics of 6061 Al alloy plates fabricated by hotroll bonding(HRB)based on friction stir welding.The results showed that ultimate tensile strength and total elongation of the hot-rolled and aged joints increased with the packaging vacuum,and the tensile specimens fractured at the matrix after exceeding 1 Pa.Non-equilibrium grain boundaries were formed at the hot-rolled interface,and a large amount of Mg_(2)Si particles were linearly precipitated along the interfacial grain boundaries(IGBs).During subsequent heat treatment,Mg_(2)Si particles dissolved back into the matrix,and Al_(2)O_(3) film remaining at the interface eventually evolved into MgO.In addition,the local IGBs underwent staged elimination during HRB,which facilitated the interface healing due to the fusion of grains at the interface.This process was achieved by the dissociation,emission,and annihilation of dislocations on the IGBs.
基金Project(51312JQ08)supported by the Pre-Research Foundation of China General Equipment DepartmentProject(NBPJ2013-4)supported by the Postdoctoral Science Foundation of Ningbo Branch of China Academy of Ordnance Science+1 种基金Project(bsh1402073)supported by the Postdoctoral Science Foundation of Zhejiang Province,ChinaProject(2014A610051)supported by the Ningbo Natural Science Foundation of China
文摘The bonding interface of 7B52 Al alloy laminated composite (ALC) fabricated by hot rolling was investigated using optical microscopy (OM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), ultrasonic flaw detection (UFD), and bonding strength tests. The results show that metallurgical bonding is achieved at the interface after composite rolling. The TEM analysis and tensile tests indicate that the 7B52 ALC plate combines high strength of the hard individual layer and good toughness of the soft individual layer. However, UFD technology and SEM analysis prove that the defects (thick oxide films, acid washed residues, air, oil and coarse particles) existing in the bonding interface are harmful to the bonding strength. To sum up, the composite roiling process is suitable for 7B52 ALC plate, and the content and size of the defects should be controlled strictly. Advanced surface treatment of each individual layer would be beneficial to further improve the bonding quality.
基金Project (2005CB623707) supported by the National Basic Research Program of China
文摘Three-layer composite ingot of 4045/3004/4045 aluminum alloys was prepared by direct-chill semi-continuous casting process,the temperature field distribution near the composite interface,macro-morphology,microstructure and composition distribution of the composite interface were investigated.The results show that semi-solid layer with a certain thickness forms near the interface due to the effect of cooling plate,which ensures successful implementation of casting the composite ingot.Two different aluminum alloys are well bonded metallurgically.The mechanical properties of composite interface were measured,the tensile and shearing strengths of composite interface are 105 and 88 MPa,respectively,which proves that the composite interface is a kind of metallurgical bonding.
基金Project(51074031)supported by the National Natural Science Foundation of ChinaProject supported by the Korea National Project
文摘In order to improve the quality of clad ingots, diverse physical fields including electromagnetic stirring, power ultrasonic and compound field of ultrasonic and electromagnetic stirring were attempted to prepare clad ingots of 3003/4004 alloys. The solidification structures near the interface in clad ingots were investigated. The experiment results indicate that the solidification structure of 4004 alloy changes from dendritic crystals to petal-like grains when the clad ingot is treated by electromagnetic stirring. With the effect of power ultrasonic, the solidified microstructure of 4004 alloy exhibits the refinement of both primary a(A1) and eutectic silicon. Under the compound field, the primary a(A1) is refined, the morphology of eutectic silicon has a transition from a coarse plate-like form without treatment or thin acicular-like form with power ultrasonic to fine coral-like form.
基金supported by the National Science and Technology Major Project of China (No.2011ZX04014-052)the National Basic Research Priorities Program of China (No.2011CB012900)
文摘A two-phase model for the prediction of macrosegregation formed during solidification is presented. This model incorporates the descriptions of heat transfer, melt convection, solute transport, and solid movement on the system scale with microscopic relations for grain nucleation and growth. Then the model is used to simulate the solidification of a benchmark industrial 3.3-t steel ingot. Simulations are per- formed to investigate the effects of grain motion and pipe shrinkage formation on the final macrosegregation pattern. The model predictions are compared with experimental data and numerical results from literatures. It is demonstrated that the model is able to express the overall macrosegregation patterns in the ingot. Furthermore, the results show that it is essential to consider the motion of equiaxed grains and the formation of pipe shrinkage in modelling. Several issues for future model improvements are identified.
基金supported by the National Natural Science Foundation of China(Grant No.51404018)the State Key Laboratory of Advanced Metallurgy Foundation(No.41614014)
文摘Two kinds of argon shroud protection devices with two different basic structures were designed and investigated. Industrial experiments and numerical simulations were used to examine the protection effect, and the mechanism of air entrapment during the casting of steel ingots was analyzed. The influence of the structure of the argon shroud protection device on the protection effect was investigated. An argon shroud protection device mounted to the nozzle holder on the bottom of the ladle does not provide a good protection effect because air can easily flow into the teeming system and cause reoxidation of molten steel during teeming. By contrast, an argon shroud protection device seated on the top of the central trumpet provides an excellent protection effect, where air has little chance of flowing into the teeming system during casting. The feasibilities of the argon shroud protection devices are discussed.
基金financially supported by the Key Special Project in the National Science & Technology Program during the Eleventh Five-Year Plan Period (No.2009ZX04014-061-7)
文摘The metallurgical effect of a round tundish used to cast heavy steel ingots in machine works at present was evaluated through water modeling experiments. The flow control devices of the improved oval tundish, which was used instead of the round tundish, had been optimized. The results show that the residence time of the round tundish is short, its inclusion removal efficiency is too low, and it has more dead zones and an unreasonable flow field. Compared with the round tundish, the improved oval tundish with the optimized weir and dam has a better effect: its minimum residence time is prolonged by 38.1 s, the average residence time is prolonged by 233.4 s, its dead volume fraction decreases from 26% to 15%, and the ratio of plug volume fraction to dead volume fraction increases from 0.54 to 1.27. The inclusion removal efficiency also increases by 17.5%.
基金supported by the Youth Science Fund Project of the National Natural Science Fund of China(No.51401070)the Program for New Century Excellent Talents in Universities(No.NCET-12-0849)the Fundamental Research Funds for the Central Universities(No.2014ZZD03)
文摘In this paper,a large-sized ingot of Mg–9Gd–3Y–1.5Zn–0.5Zr(wt%) alloy with a diameter of 600 mm was successfully prepared by the semi-continuous casting method.The alloy was subsequently annealed at a relatively low temperature of 430°C for 12 h as a homogenization treatment.The microstructure and room-temperature mechanical properties of the alloy were investigated systematically.The results show that the as-cast alloy contained a mass of discontinuous lamellar-shaped 18 R long-period stacking ordered(LPSO) phases with a composition of Mg10 Zn Y and an α-Mg matrix,along with net-shaped Mg5(Y,Gd) eutectic compounds at the grain boundaries.Most of the eutectic compounds dissolved after the homogenization treatment.Moreover,the amount and dimensions of the lamellar-shaped LPSO phase obviously increased after the homogenization treatment.The structure of the phase transformed into 14H-type LPSO with composition Mg12Zn(Y,Gd).The mechanical properties of the heat-treated large-sized alloy ingot are uniform.The ultimate tensile strength(UTS) and tensile yield strength(TYS) of the alloy reached 207.2 MPa and 134.8 MPa,respectively,and the elongation was 3.4%.The high performances of the large-sized alloy ingot after the homogenization treatment is attributed to the strengthening of the α-Mg solid solution and to the plentiful LPSO phase distributed over the α-Mg matrix.
基金financially supported by the National Natural Science Foundation of China(Granted No.U1760204,51504048)the National Key Research Program of China(Granted No.2017YFB0701800)
文摘Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.
基金financially supported by the project to strengthen industrial development at the grassroots level of the Ministry of Industry and Information Technology (MIIT), China (No. TC160A310/21)
文摘Macrosegregation is the major defect in large steel ingots caused by solute partitioning and melt convection during casting.In this study,a three-phase(liquid,columnar dendrites,and equiaxed grains)model is proposed to simulate macrosegregation in a 36-t steel ingot.A supplementary set of conservation equations are employed in the model such that two types of equiaxed grains,either settling or adhering to the solid shell,are well simulated.The predicted concentration agrees quantitatively with the experimental value.A negative segregation cone was located at the bottom owing to the grain settlement and solute-enriched melt leaving from the mushy zone.The interdendritic liquid flow was carefully analyzed,and the formation of A-type segregations in the mid-height of the ingot is discussed.Negative segregation was observed near the riser neck due to the specific relationship between flow direction and temperature gradient.Additionally,the as-cast macrostructure of the ingot is presented,including the grain size distribution and columnar–equiaxed transition.
文摘The method based on transient heat transfer model is adopted to simulate electro-slag remelting process. The calculated results of the model show that the process is in the quasi-steady state, and the shape of pool remains unchanged when the height of ingot is approximately 2.5-3 times the thickness of slab ingot. The change in the shape of pool is found to be strongly dependent on the pattern of melting rate, and hence, the power input; the depth of the molten pool increases with the increase in melting speed. It is concluded that a transient heat transfer model has to be used to obtain reliable input information for the entire, operatina time.
基金This work was financially supported by the National NSFC BaoSteel Conjunct Foun dation(No.50174031).
文摘A mathematical model coupling the momentum, energy and species conservation equa-tions was proposed to calculate the macro--segregation of Fe--C alloy ingot during solid-ification. The corresponding simulation software which concurrently solves the macro-scopic mass, momentum, energy and species conservation equations has been developedby applying the SIMPLE algorithm.The thermo--solutal convection in a NH_4 Cl--H_2O ingot is verified and the result showsgood agreement with that reported. Then macro--segregation in a steel ingot is simu-lated by using the developed program. The steel ingot is in a rectangular mold with ariser. The fluid flow is mainly induced by the temperature field and the solid fraction.The macro--segregation pattern is mainly affected by the thermo--induced convectionin the mushy zone. The negative segregation forms along the walls of the casting.The positive segregation forms at the top center of the casting into the riser. Thespecies concentration reaches the peak in the center of the ingot where solidificationends lastly.
文摘Pulse Electric Discharging (PED) is a novel technique that can modify solidifying structure and reduce grain size. ItS effectsapplied to the high carbon liquid steel were presented here. The macrostructure and microstructure of the high carbon alloy steel werealso observed. Results show that (1 ) the length of columnar crystal at the edge of ingot without PED treatment is much longer than thatwith PED, and (2) the perlite lamellae of steel billets after deposed by PED are twisted and shortened. An explanation of those experimental results is given.
基金Project(50974016)supported by the National Natural Science Foundation of China。
文摘The fundamental mechanism of the cracking formation was investigated for the as-cast GH4151 superalloy.By analyzing the characteristics of cracking,the cracking mechanism was determined to be the cold crack formed during the cooling process.And cold cracking is closely related to severe segregation,complex precipitates and uneven γ'phase distribution.During cooling process,cracks were generated around the precipitates due to their different linear shrinkage coefficients.The annealing treatment process controlling the residual stress,the size and morphology of γ'phase was proposed.The annealing treatment plays a role in reducing residual stress through decreasing the thermal gradient and controlling the size distribution of γ'phase to reduce the strain concentration around the precipitate phases.