With the continuous improvement of product quality and function,the quality control of mold steel is becoming increasingly stricter. Argon protection is essential for ensuring casting quality during ingot casting. The...With the continuous improvement of product quality and function,the quality control of mold steel is becoming increasingly stricter. Argon protection is essential for ensuring casting quality during ingot casting. The development of argon protection in ingot casting and the production process of enclosed argon protection in 40 t line is discussed,w ith particular focus given the factors affecting the flow of oxygen in the argon protection cover are discussed. The influence of some related factors on the oxygen content is analyzed. On the basis of the online measurements of the oxygen content,the optimized operational approaches for improving the effect of argon protection are developed. This can decrease the liquid steel via secondary oxidation,and improve the quality of the ingots.展开更多
During the ingot casting process, the parametric changes of the molten steel pouring process often cause both ingot surface and internal quality defects. With the increasingly wide application of computers in industri...During the ingot casting process, the parametric changes of the molten steel pouring process often cause both ingot surface and internal quality defects. With the increasingly wide application of computers in industrial technology ,numerical simulations of the molten steel pouring process enable predictions of the defects that will arise during the pouring and solidification process, especially for the molten steel flow during the early stages of casting. In addition,using a computer to simulate the casting process of a 40 t ingot and solidification can prevent many defects. The simulation results indicate that controlling the pouring speed to less than 80 kg/s, hanging the casting powder in a mold with the hanging height maintained at 100-150 mm, and controlling the taper angle of the mold brick outlet to a suitable level can reduce the probability of slag entrapment and improve the internal and surface quality of the ingot.展开更多
To control the distribution of nonmetallic inclusions in molten developed method, hot-top pulsed magneto-oscillation (HPMO), steel is of highly commercial importance. A newly was employed to control nonmetallic incl...To control the distribution of nonmetallic inclusions in molten developed method, hot-top pulsed magneto-oscillation (HPMO), steel is of highly commercial importance. A newly was employed to control nonmetallic inclusions in a medium-carbon steel ingot. The experimental results present that the position of nonmetallic inclusions of spinel (Al-Mg-O) and Mn-S inclusions is significantly influenced by HPMO. The number of nonmetallic inclusions gradually increased from the lateral wall to the center of ingot along the radial direction under the impact of HPMO treatment, whereas this distribution trend cannot be observed in the reference sample without HPMO treatment. In addition, the number of inclusions along vertical direction is proportional to the height of ingot, especially for the inclusions with the size of larger than 10 pro. It indicates that the application of HPMO can push away inclusions from lateral to center, and then the expelled inclusions aggregate and rise up to the top of ingot.展开更多
文摘With the continuous improvement of product quality and function,the quality control of mold steel is becoming increasingly stricter. Argon protection is essential for ensuring casting quality during ingot casting. The development of argon protection in ingot casting and the production process of enclosed argon protection in 40 t line is discussed,w ith particular focus given the factors affecting the flow of oxygen in the argon protection cover are discussed. The influence of some related factors on the oxygen content is analyzed. On the basis of the online measurements of the oxygen content,the optimized operational approaches for improving the effect of argon protection are developed. This can decrease the liquid steel via secondary oxidation,and improve the quality of the ingots.
文摘During the ingot casting process, the parametric changes of the molten steel pouring process often cause both ingot surface and internal quality defects. With the increasingly wide application of computers in industrial technology ,numerical simulations of the molten steel pouring process enable predictions of the defects that will arise during the pouring and solidification process, especially for the molten steel flow during the early stages of casting. In addition,using a computer to simulate the casting process of a 40 t ingot and solidification can prevent many defects. The simulation results indicate that controlling the pouring speed to less than 80 kg/s, hanging the casting powder in a mold with the hanging height maintained at 100-150 mm, and controlling the taper angle of the mold brick outlet to a suitable level can reduce the probability of slag entrapment and improve the internal and surface quality of the ingot.
基金Acknowledgements The authors acknowledge the financial supports from the National Natural Science Foundation of China (Grant Nos. U1760204 and 51504048), the National Key Research Program of China (Grant No. 2017YFB0701800) and the Science and Technology Commission of Shanghai Municipality (Grant No. 15520710800).
文摘To control the distribution of nonmetallic inclusions in molten developed method, hot-top pulsed magneto-oscillation (HPMO), steel is of highly commercial importance. A newly was employed to control nonmetallic inclusions in a medium-carbon steel ingot. The experimental results present that the position of nonmetallic inclusions of spinel (Al-Mg-O) and Mn-S inclusions is significantly influenced by HPMO. The number of nonmetallic inclusions gradually increased from the lateral wall to the center of ingot along the radial direction under the impact of HPMO treatment, whereas this distribution trend cannot be observed in the reference sample without HPMO treatment. In addition, the number of inclusions along vertical direction is proportional to the height of ingot, especially for the inclusions with the size of larger than 10 pro. It indicates that the application of HPMO can push away inclusions from lateral to center, and then the expelled inclusions aggregate and rise up to the top of ingot.