[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of C...[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of Chinese cabbage. [ Method] Three phenotypic measurements, bolting index, flowering time, days to 5 cm elongated stalk, respectively were used for inheritance analysis of six generations, P, (bolting resistant inbreed line ), P2 (vernalization independent type) and their filial generations F1 , B1, B2 and F2, using the mixed major-gene plus polygene inheritance model. [ Result] The two traits, bolting index and days to 5 cm elongated stalk, both were controlled by two major genes with additive-dominant-epistatic effects ( B-1 model) in hybrid. The flowering time was controlled by one major gene with addltive-dominant effects plus additive-dominant-epistatic effects (D model). The heritability of the major genes in B1, B2 and F2 were 96.22%, 93.33%, 93.55% for bolting index, 70.68%, 70.68%, 70.64% for flowering time, 79.44%, 79.55%, 79.38% for days to 5-cm elongated stalk, respectively, but no polygene heritability was detected in BI, B2 and F2 generation. It indicated that the bolting trait in Brassica rapa was controlled by one or tow major genes. [ Conclusion] This implied that in the genetic improvement for bolting resistant trait major gene was a main factor. It is fit for early selection and environment factor should be mentioned.展开更多
To fully understand the tomato ovary locule formation of inheritance, two varieties, ovary multi-locule (MLK1) and few-locule (FL1), were used in these studies. Using reciprocal cross, self-cross, and backcross, w...To fully understand the tomato ovary locule formation of inheritance, two varieties, ovary multi-locule (MLK1) and few-locule (FL1), were used in these studies. Using reciprocal cross, self-cross, and backcross, we have constructed various groups to seek the genetic law and mechanisms of tomato locule formation, for modifying the tomato breeding theory. The parental and the resulting FI and F2 generations have been used to examine the heredity of the locule number. The results showed that few-locule was incompletely dominant. The data from backcross demonstrated a significant effect on the locule number, whereas, the reciprocal cross showed an insignificant effect. Not surprisingly, the locule number was controlled by nuclear genomes, not by exogenous substances. The model that inherited the locule number belonged to the additive-dominant model: additive effects played a very important role and were partially dominant. In addition, the results revealed that the locule number in tomato was mainly controlled by a single gene, whereas, it was modulated by a number of other genes. Finally, the general inheritability and narrow inheritability of the locule number were 69.44% and 52.98%, respectively.展开更多
The traditional residence of ethnic minorities in western Hubei has a long history,and their construction skills reflect the wisdom and culture of the nation.Due to the limitation of geographical environment,the devel...The traditional residence of ethnic minorities in western Hubei has a long history,and their construction skills reflect the wisdom and culture of the nation.Due to the limitation of geographical environment,the development of modern cities and towns,and the influence of foreign culture,the inheritance of traditional construction skills is facing a great crisis.This paper analyzes the research status of traditional residence of ethnic minorities and summarizes the necessity of inheriting the traditional residence construction technique.Moreover,strategies and suggestions about inheritance are put forward from four aspects:the national policy guidance and local implementation,building characteristic area of traditional residence,establishing and improving the theoretical framework of building skills,and building digital platform.The ways and methods of integrating traditional construction skills and culture into the training process of colleges and universities are explored.展开更多
[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1...[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.展开更多
A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model...A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model of quantitative traits. The results showed that the EPF of wheat × maize cross was controlled by two dominant epistatic genes and polygene with gene effects of 1.95 for the first major gene, 6.69 for the second one and 2.80 for the polygene. The inheritability of major genes was as high as 72.09%, suggesting that the differences in EPF among wheat materials were mainly influenced by genotype. However, non-genetic factors were still important, especially for wheat materials with low EPF.展开更多
Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR marker...Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.展开更多
This study was to find the regularity in the hereditary variation for the main culturing characters of the immature embryo culture in maize. Two kinds of inbred-line, R18-599 (red) with very excellent embryo culturi...This study was to find the regularity in the hereditary variation for the main culturing characters of the immature embryo culture in maize. Two kinds of inbred-line, R18-599 (red) with very excellent embryo culturing capacity and R15 with very poor embryo culturing capacity, were used as P1 and P2 for obtaining six generations. By culturing immature embryos of the six generations, four culturing characters, namely embryonic callus induction efficiency, nonembryonic callus induction efficiency, cloning ability of the embryonic callus, and number of regenerating plants, were analyzed using the general mean analysis and generation joint analysis. Results showed that the embryonic callus induction efficiency accorded with two major additive-dominance-epistatic genes and polygene-mixed additive-dominance-epistatic inheritance model. The induction efficiency of the nonembryonic callus accorded with two major additive-dominance-epistatic genes. The number of regenerating plants accorded with one major gene and polygene-mixed additive-dominance inheritance model. The cloning ability of the embryo callus accorded with two major genes and polygene-mixed inheritance model, whereas the effect of epistatic gene on this character was identified results of the two methods, generation joint analysis may genetic information. to be different using the two methods. By comparison of the not only raise experimental precision but also provide more展开更多
Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene an...Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes(up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.展开更多
基金Supported by the National Natural Science Foundation of China(30900981)the Scientific Research Fund for the Returned Overseas Chinese Scholars,Ministry Education of China(2010-1561)
文摘[ Objective ] This study aimed to analyze the inheritance of bolting associated traits in Brassica rapa, which will provide useful information in a breeding program for late-bolting or bolting-resistant cultivars of Chinese cabbage. [ Method] Three phenotypic measurements, bolting index, flowering time, days to 5 cm elongated stalk, respectively were used for inheritance analysis of six generations, P, (bolting resistant inbreed line ), P2 (vernalization independent type) and their filial generations F1 , B1, B2 and F2, using the mixed major-gene plus polygene inheritance model. [ Result] The two traits, bolting index and days to 5 cm elongated stalk, both were controlled by two major genes with additive-dominant-epistatic effects ( B-1 model) in hybrid. The flowering time was controlled by one major gene with addltive-dominant effects plus additive-dominant-epistatic effects (D model). The heritability of the major genes in B1, B2 and F2 were 96.22%, 93.33%, 93.55% for bolting index, 70.68%, 70.68%, 70.64% for flowering time, 79.44%, 79.55%, 79.38% for days to 5-cm elongated stalk, respectively, but no polygene heritability was detected in BI, B2 and F2 generation. It indicated that the bolting trait in Brassica rapa was controlled by one or tow major genes. [ Conclusion] This implied that in the genetic improvement for bolting resistant trait major gene was a main factor. It is fit for early selection and environment factor should be mentioned.
基金This work was supported by the eleventh ‘Five Years Key Programs’ for the Science and Technology Development of Liaoning Province (No. 2006215001)
文摘To fully understand the tomato ovary locule formation of inheritance, two varieties, ovary multi-locule (MLK1) and few-locule (FL1), were used in these studies. Using reciprocal cross, self-cross, and backcross, we have constructed various groups to seek the genetic law and mechanisms of tomato locule formation, for modifying the tomato breeding theory. The parental and the resulting FI and F2 generations have been used to examine the heredity of the locule number. The results showed that few-locule was incompletely dominant. The data from backcross demonstrated a significant effect on the locule number, whereas, the reciprocal cross showed an insignificant effect. Not surprisingly, the locule number was controlled by nuclear genomes, not by exogenous substances. The model that inherited the locule number belonged to the additive-dominant model: additive effects played a very important role and were partially dominant. In addition, the results revealed that the locule number in tomato was mainly controlled by a single gene, whereas, it was modulated by a number of other genes. Finally, the general inheritability and narrow inheritability of the locule number were 69.44% and 52.98%, respectively.
基金Major Project of Philosophy and Social Science Research in Hubei Colleges and Universities (20ZD033)Humanities and Social Sciences Key Research Base Open Fund in Hubei Colleges and Universities,Bachu Art Culture Research Center (2018KF04)。
文摘The traditional residence of ethnic minorities in western Hubei has a long history,and their construction skills reflect the wisdom and culture of the nation.Due to the limitation of geographical environment,the development of modern cities and towns,and the influence of foreign culture,the inheritance of traditional construction skills is facing a great crisis.This paper analyzes the research status of traditional residence of ethnic minorities and summarizes the necessity of inheriting the traditional residence construction technique.Moreover,strategies and suggestions about inheritance are put forward from four aspects:the national policy guidance and local implementation,building characteristic area of traditional residence,establishing and improving the theoretical framework of building skills,and building digital platform.The ways and methods of integrating traditional construction skills and culture into the training process of colleges and universities are explored.
基金Supported by the Science and Technology Project of Food Production in Jiangxi Province(2006BAD02A04)~~
文摘[Objective] The aim was to carry out the genetic analysis on plant height of rice(Oryza sativa L.)cultivated in different seasons.[Method] Three rice parents with great difference in plant height including CB1(83.1 cm),CB4(105.5 cm)and CB7(115.6 cm)were chosen to construct two parental combinations:CB1×CB4 and CB7×CB4,and the corresponding filial generations P1,F1,P2,B1,B2 and F2 were obtained.The 6 populations were planted in middle and late seasons respectively to measure their height traits.The Akaike's information criterion(AIC)of the mixed major gene and polygene model was used to indentify the existence of major genes affecting quantitative traits in B1,B2,F2 populations.When the major genes existed,the genetic effects of the major genes and polygenes and their genetic variance were estimated through segregation analysis.[Result] One additive major gene plus additive-dominance polygenes was the most fitted genetic model for the trait in all B1,B2,F2 populations in two planting seasons.The heritability values of the major genes varied from 38.63% to 78.53% and those of polygenes varied from 1.72% to 36.04%,and the total heritability values were 45.52-92.93%.The additive effect d value of the two genetic populations under two planting seasons was-4.56,-9.16,-7.19,and-9.38,respectively,as suggested that additive effect of the major genes would decrease the express of the plant height trait.[Conclusion] The heritability of plant height trait was affected by planting seasons and the combinations clearly as a whole.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA10A106)Yunnan Provincial Fund for Applied Basic Researches(2010CC001)Key New Product Development Plan of Yunnan Province(2012BB015)~~
文摘A DH population derived from C49S-87/01Y1-1069 was used to study the inheritance of wheat haploid embryo production frequency(EPF) in wheat × maize cross with the mixed major gene and polygene inheritance model of quantitative traits. The results showed that the EPF of wheat × maize cross was controlled by two dominant epistatic genes and polygene with gene effects of 1.95 for the first major gene, 6.69 for the second one and 2.80 for the polygene. The inheritability of major genes was as high as 72.09%, suggesting that the differences in EPF among wheat materials were mainly influenced by genotype. However, non-genetic factors were still important, especially for wheat materials with low EPF.
基金supported by the Program of National High Technology Research and Development,Ministry of Science and Technology,China (Grant No.2010AA101301)the Program of Introducing International Advanced Agricultural Science and Technology in China (Grant No. 2006-G8[4]-31-1)the Program of Science Technology Basis and Conditional Platform in China (Grant No. 505005)
文摘Panicle angle (PA) of 254 recombinant inbred lines derived from a cross between two japonica varieties Xiushui 79 and C Bao was investigated under four environments,and a genetic linkage map including 111 SSR markers was constructed.Genetic analysis was conducted by mixed major gene plus polygene inheritance models,and quantitative trait loci (QTLs) identification by the QTLNetwork 2.0 and the composite interval mapping approach of WinQTLCart 2.5 software.Results showed that the PA trait was controlled by two major genes plus polygenes,mainly by major genes.Eight QTLs for PA were detected by the QTLNetwork 2.0 software,and each locus explained 0.01% to 39.89% of the phenotypic variation.Twelve QTLs for PA were detected by the WinQTLCart 2.5 software,with each locus explaining 2.83% to 30.60% of the phenotypic variation.Two major QTLs (qPA9.2 and qPA9.5) distributed between RM3700 and RM3600 and between RM5652 and RM410,respectively,and a moderate QTL (qPA9.7) distributed between RM257 and OSR28,were both detected by the two methods in all of the four environments.The negative effect alleles of the three QTLs were from Xiushui 79.In addition,eight pairs of epistatic QTLs with minor effects were also detected.QTL × environment interactions were not significant for additive QTLs and epistatic QTL pairs.
文摘This study was to find the regularity in the hereditary variation for the main culturing characters of the immature embryo culture in maize. Two kinds of inbred-line, R18-599 (red) with very excellent embryo culturing capacity and R15 with very poor embryo culturing capacity, were used as P1 and P2 for obtaining six generations. By culturing immature embryos of the six generations, four culturing characters, namely embryonic callus induction efficiency, nonembryonic callus induction efficiency, cloning ability of the embryonic callus, and number of regenerating plants, were analyzed using the general mean analysis and generation joint analysis. Results showed that the embryonic callus induction efficiency accorded with two major additive-dominance-epistatic genes and polygene-mixed additive-dominance-epistatic inheritance model. The induction efficiency of the nonembryonic callus accorded with two major additive-dominance-epistatic genes. The number of regenerating plants accorded with one major gene and polygene-mixed additive-dominance inheritance model. The cloning ability of the embryo callus accorded with two major genes and polygene-mixed inheritance model, whereas the effect of epistatic gene on this character was identified results of the two methods, generation joint analysis may genetic information. to be different using the two methods. By comparison of the not only raise experimental precision but also provide more
基金supported by the Natural Science Foundation of China (No.30490250)the National Key Basic Research Program (2002CB111304,2004CB7206).
文摘Based on the traditional polygene inheritance model of quantitative traits,the author suggests the major gene and polygene mixed inheritance model.The model was considered as a general one,while the pure major gene and pure polygene inheritance model was a specific case of the general model.Based on the proposed theory,the author established the segregation analysis procedure to study the genetic system of quantitative traits of plants.At present,this procedure can be used to evaluate the genetic effect of individual major genes(up to two to three major genes),the collective genetic effect of polygene,and their heritability value.This paper introduces how to establish the procedure,its main achievements,and its applications.An example is given to illustrate the steps,methods,and effectiveness of the procedure.