Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance....Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance. In this work, we fabricate carbon coated Li3VO4(C@LVO) rods by a facile morphology inheritance route. The as-prepared C@LVO rods are 400–800 nm in length and 200–400 nm in diameter,and orthorhombic phase with V5+. The unique core-shell rods structure greatly improves the transport ability of electrons and Li+. Such C@LVO submicron-rods as anode materials exhibit excellent rate capability(a reversible capability of 460,438, 416, 359 and 310 m A h g^-1 at 0.2, 1, 2, 5 and 10 C, respectively) and a high stable capacity of 440 and 313 m A h g^-1 up to 300 cycles at 0.2 and 5 C, respectively.展开更多
基金supported by the National Natural Science Foundation of China(21476019 and 21676017)
文摘Li3VO4 shows great potential as an intercalation/de-intercalation type anode material for energy-storage devices. Morphology tailoring and surface modification are effective to enhance its lithium storage performance. In this work, we fabricate carbon coated Li3VO4(C@LVO) rods by a facile morphology inheritance route. The as-prepared C@LVO rods are 400–800 nm in length and 200–400 nm in diameter,and orthorhombic phase with V5+. The unique core-shell rods structure greatly improves the transport ability of electrons and Li+. Such C@LVO submicron-rods as anode materials exhibit excellent rate capability(a reversible capability of 460,438, 416, 359 and 310 m A h g^-1 at 0.2, 1, 2, 5 and 10 C, respectively) and a high stable capacity of 440 and 313 m A h g^-1 up to 300 cycles at 0.2 and 5 C, respectively.