It is desirable but always challenging to develop a cutting-edge tumor treatment strategy with high therapeutic efficacy,lesiontargeted precision and mild accessibility.Compared to traditional treatment modalities,pho...It is desirable but always challenging to develop a cutting-edge tumor treatment strategy with high therapeutic efficacy,lesiontargeted precision and mild accessibility.Compared to traditional treatment modalities,photodynamic therapy has been widely studied since the generation of reactive oxygen species(ROS)at cancerous lesions unprecedentedly offers a convenient approach for localized tumor eliminations.Nevertheless,the consumption of oxygen for ROS production in a hypoxic tumor microenvironment has dramatically limited its feasibility and efficacy.Herein,the engineered nanocomposites of BTO@PDA-ICGHA with photodynamic and pyroelectric performances have been fabricated and applied to the photodynamic-pyroelectric dynamic treatments.The continuing ROS production derived from intracellular oxygen(O_(2))and water(H_(2)O)by laser irradiation contributed to the superb tumor cell apoptosis and significant tumor growth inhibition.Thus,this study has validated a new concept by depositing the engineered nanocomposites at the tumor just like Trojan horses,facilitating ROS release as killers and exerting the NIR-induced cell apoptosis and tumor growth inhibition with high therapeutic efficiency and expectable translational perspectives.展开更多
目的考察槲皮素PLGA-TPGS纳米粒(QPTN)在体内对荷腹水型肝癌高淋巴道转移细胞HCa-F小鼠异位移植实体瘤的治疗效果。方法建立荷HCa-F肝癌细胞小鼠模型后,随机分为阴性对照组、空白纳米粒组、5-氟尿嘧啶溶液(FS)组、槲皮素溶液(QTS)组、...目的考察槲皮素PLGA-TPGS纳米粒(QPTN)在体内对荷腹水型肝癌高淋巴道转移细胞HCa-F小鼠异位移植实体瘤的治疗效果。方法建立荷HCa-F肝癌细胞小鼠模型后,随机分为阴性对照组、空白纳米粒组、5-氟尿嘧啶溶液(FS)组、槲皮素溶液(QTS)组、槲皮素PLGA纳米粒(QPN)组和QPTN组。尾静脉给药,每2 d 1次,连续给药20 d后处死小鼠,剥离肿瘤,称质量,测量肿瘤体积,根据公式计算肿瘤体积增长量和抑瘤率;行HE染色观察肿瘤,全面评价QPTN对荷瘤小鼠的治疗效果。结果小鼠体内给药10次后,QPTN组、QPN组、FS组的肿瘤体积增长量与阴性对照组相比明显减小(P<0.05或P<0.01),QPTN组抑瘤率(59.07%)明显高于QTS组(23.94%)、FS组(35.14%)和QPN组(46.14%)。HE染色结果也显示QPTN组对小鼠肿瘤的治疗效果最明显。结论与QPN、QTS和FS相比,QPTN对荷HCa-F肝癌细胞小鼠异位实体瘤具有较好的治疗效果。展开更多
基金supported by the National Natural Science Foundation of China(82072057,82311540023)。
文摘It is desirable but always challenging to develop a cutting-edge tumor treatment strategy with high therapeutic efficacy,lesiontargeted precision and mild accessibility.Compared to traditional treatment modalities,photodynamic therapy has been widely studied since the generation of reactive oxygen species(ROS)at cancerous lesions unprecedentedly offers a convenient approach for localized tumor eliminations.Nevertheless,the consumption of oxygen for ROS production in a hypoxic tumor microenvironment has dramatically limited its feasibility and efficacy.Herein,the engineered nanocomposites of BTO@PDA-ICGHA with photodynamic and pyroelectric performances have been fabricated and applied to the photodynamic-pyroelectric dynamic treatments.The continuing ROS production derived from intracellular oxygen(O_(2))and water(H_(2)O)by laser irradiation contributed to the superb tumor cell apoptosis and significant tumor growth inhibition.Thus,this study has validated a new concept by depositing the engineered nanocomposites at the tumor just like Trojan horses,facilitating ROS release as killers and exerting the NIR-induced cell apoptosis and tumor growth inhibition with high therapeutic efficiency and expectable translational perspectives.
文摘目的考察槲皮素PLGA-TPGS纳米粒(QPTN)在体内对荷腹水型肝癌高淋巴道转移细胞HCa-F小鼠异位移植实体瘤的治疗效果。方法建立荷HCa-F肝癌细胞小鼠模型后,随机分为阴性对照组、空白纳米粒组、5-氟尿嘧啶溶液(FS)组、槲皮素溶液(QTS)组、槲皮素PLGA纳米粒(QPN)组和QPTN组。尾静脉给药,每2 d 1次,连续给药20 d后处死小鼠,剥离肿瘤,称质量,测量肿瘤体积,根据公式计算肿瘤体积增长量和抑瘤率;行HE染色观察肿瘤,全面评价QPTN对荷瘤小鼠的治疗效果。结果小鼠体内给药10次后,QPTN组、QPN组、FS组的肿瘤体积增长量与阴性对照组相比明显减小(P<0.05或P<0.01),QPTN组抑瘤率(59.07%)明显高于QTS组(23.94%)、FS组(35.14%)和QPN组(46.14%)。HE染色结果也显示QPTN组对小鼠肿瘤的治疗效果最明显。结论与QPN、QTS和FS相比,QPTN对荷HCa-F肝癌细胞小鼠异位实体瘤具有较好的治疗效果。