A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real ...A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real sample ofbiomass as feed, the fouling-suppression performance using DEP with different electrical field intensities (60-160 V) and different frequencies (50-1000 Hz) was investigated. The fouling-suppression performance was found to relate closely with the intensity and frequency of the electrical field. A stronger electrical field was found to better recover the filtrate flux. This is because of a stronger DEP force acting on the biomass par[ides close to the membrane's surface. Above an intensity and frequency value of 130 V and 1 kHz, respectively the permeate flux was reduced due to an electrothermal effect.展开更多
文摘A novel method was developed to suppress membrane fouling in submerged membrane bioreactors. The method is based on the dielectrophoretic (DEP) motion of particles in an inhomogeneous electrical field. Using a real sample ofbiomass as feed, the fouling-suppression performance using DEP with different electrical field intensities (60-160 V) and different frequencies (50-1000 Hz) was investigated. The fouling-suppression performance was found to relate closely with the intensity and frequency of the electrical field. A stronger electrical field was found to better recover the filtrate flux. This is because of a stronger DEP force acting on the biomass par[ides close to the membrane's surface. Above an intensity and frequency value of 130 V and 1 kHz, respectively the permeate flux was reduced due to an electrothermal effect.