期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of initial microstructure on hot workability of 7085 aluminum alloy 被引量:5
1
作者 陈送义 陈康华 +1 位作者 彭国胜 贾乐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期956-963,共8页
The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300... The hot workability of 7085 aluminum alloys with different initial microstructures (as-homogenized and as-solution treated) was studied by isothermal compression tests at the deformation temperature ranging from 300 to 450 ℃ and the strain rate ranging from 0.0001 to 1 s 1. The strain rate sensitivity of the alloy was evaluated and used for establishing the power dissipation maps and instability maps on the basis of the flow stress data. The results show that the efficiency of power dissipation for the as-homogenized alloy is lower than that of the as-solution treated alloy. The deformation parameters of the dynamic recrystallization for the as-homogenized and as-solution treated alloy occur at 400 ℃, 0.01 s i and 450 ℃, 0.001 s-1, respectively. The flow instability region of the as-homogenized alloy is narrower than that of the as-solution treated alloy. These differences of the alloys with two different initial microstructures on the processing maps are mainly related to the dynamic precipitation characteristics. 展开更多
关键词 7085 aluminum alloy initial microstructure hot workability processing map strain rate sensitivity
下载PDF
A discontinuous dynamic recrystallization model incorporating characteristics of initial microstructure 被引量:3
2
作者 Xi-ting ZHONG Lin-ke HUANG +3 位作者 Lei WANG Feng LIU Xiao-ming DONG Zhong-hua ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2295-2307,共13页
In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based m... In order to describe and predict the kinetic process of discontinuous dynamic recrystallization (DDRX) during hot workingfor metals with low to medium stacking fault energies quantitatively, a new physically-based model was proposed by considering thecharacteristics of grain size distribution, capillary effect of initial grain boundaries (GBs) and continuous consumption of GBs. UsingIncoloy 028 alloy as a model system, experiments aiming to provide kinetic data (e.g., the size and volume fraction of recrystallizedgrain) and the associated microstructure were performed. Good agreement is obtained between model predictions and experimentalresults, regarding flow stress, recrystallized fraction and grain size evolution. On this basis, a thermo-kinetic relationship upon thegrowth of recrystallized grain was elucidated, i.e., with increasing thermodynamic driving force, the activation energy barrierdecreases. 展开更多
关键词 discontinuous dynamic recrystallization (DDRX) kinetic model grain boundary initial microstructure
下载PDF
Enhanced tensile properties of a reversion annealed 6.5Mn-TRIP alloy via tailoring initial microstructure and cold rolling reduction 被引量:5
3
作者 Minghui Cai Hongshou Huang +2 位作者 Junhua Su Hua Ding Peter D.Hodgson 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第8期1428-1435,共8页
The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction. The combined effects of cooling patterns after hot rolling... The feasibility of improving the overall performance of medium Mn steels was demonstrated via tailoring the initial microstructure and cold rolling reduction. The combined effects of cooling patterns after hot rolling (HR) and cold rolling (CR) reductions show: (1) as the cooling pattern varied from furnace cooling (FC) to oil quenching (OQ), the intercritically annealed microstructure was dramatically refined and the fraction of recrystallized ferrite dropped, regardless of CR reductions. This resulted in both high yield/ultimate tensile strengths (YS/UTS) but low total elongation to fracture (El); (2) as the CR reduction increased from 50% to 75%, the OQ-samples after annealing exhibited a more refined microstructure with relatively higher fractions of retained austenite and sub-structure, leading to higher YS and UTS but lower El; whereas the FC samples appeared to exhibit little difference in overall tensile properties in both cases. The differences in microstructural evolution with cooling patterns and CR reductions were explained by the calculated accumulated effective strain (eAES), which was considered to be related to degrees of recovery and recrystallization of the deformed martensite (α'). The optimal tensile properties of -1 GPa YS and -40 GPa.% UTSxEI were achieved in the OQ-50%CR annealed samples at 650 ℃ for 1 h. This was quite beneficial to large-scale production of ultra-high strength steels, owing to its serious springback during heaw cold working. 展开更多
关键词 Medium Mn steel Reversion annealing Microstructural evolution Mechanical properties initial microstructure Cold rolling
原文传递
Influence of initial microstructure and grain size on transformation of bainite to austenite in large size forgings
4
作者 Emna Ben Fredj Hadi Ghasemi Nanesa +1 位作者 Mohammad Jahazi Jean-Benoit Morin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期554-562,共9页
The kinetics of austenite formation in the surface and center regions of a 40 t forged ingot of a high-strength medium- carbon low-alloy steel was studied using high-resolution dilatometry. The starting microstructure... The kinetics of austenite formation in the surface and center regions of a 40 t forged ingot of a high-strength medium- carbon low-alloy steel was studied using high-resolution dilatometry. The starting microstructures from the surface or center regions had different proportions of bainite and residual austenite as well as different prior austenite grain sizes. Two heating rates representing the actual heating rates in the surface (5℃ s -1) and center regions (0.5℃ s -1) of large size forged blocks were utilized. Dilatometric curves revealed only one transformation step of austenite formation at both heating rates independent of grain size or proportion of phases. Optical microscopy, field emission gun scanning electron microscopy and X-ray diffraction were used to study microstructure evolution and confirm the results obtained by dilatometry. The kinetic parameters for austenite formation were determined from the dilatometry data by Johnson-Mehl- Avrami-Kolmogorov (JMAK) equation. The JMAK coefficients were determined for each condition of the investigated steels. The calculations indicated that the nucleation and growth of austenite in the surface region were accelerated more than 10,000 times due to a significantly smaller average prior austenite grain size, stability of initial retained austenite, and accumulation of coarse carbides at the surface. The results were discussed in the framework of classical nucleation and growth theories using the kinetic parameters for austenite formation. 展开更多
关键词 Large size ingot Medium-carbon low-alloy steel initial microstructure Grain size Austenite formation
原文传递
Constitutive relation of weakly anisotropic polycrystal with microstructure and initial stress 被引量:7
5
作者 Mojia Huang Hua Zhan Xiuqiao Lin Hai Tang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期183-198,共16页
Man (Nondestr Test Eval 15:191-214, 1999) derived the constitutive relation of a weakly-textured orthorhombic aggregate of cubic crystallites with effects of microstructure and initial stress. In this paper, a comp... Man (Nondestr Test Eval 15:191-214, 1999) derived the constitutive relation of a weakly-textured orthorhombic aggregate of cubic crystallites with effects of microstructure and initial stress. In this paper, a computational expression on the integration ∫SO(3) Q^× D^1m0dg is given. Then, by means of the computational expression, the general constitutive relation of a weakly-textured anisotropic polycrystal with the consideration of microstructure and initial stress is derived. As special cases of our general constitutive relation, two constitutive relations are given for an isotropic polycrystal and a weakly-textured anisotropic aggregate of cubic crystallites. The acoustoelastic tensor of the reference cubic crystal is derived to determine the material constants of the polycrystal. Two examples are given for understanding the physical meaning of the texture coefficients and the constitutive relations. 展开更多
关键词 Generalconstitutive relation of weakly-textured polycrystal .microstructure initial stress .Cubic crystallites
下载PDF
Influence of RE-rich phase distribution in initial alloy on anisotropy of HDDR powders
6
作者 蔡岭文 郭帅 +4 位作者 丁广飞 陈仁杰 刘剑 李东 闫阿儒 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期523-526,共4页
The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ing... The influence of the RE-rich phase distribution in the precursor alloys on the anisotropy of the hydrogenation disproportionation desorption recombination(HDDR) processed powders is investigated. The homogenized ingot alloy and the as-cast strip casting(SC) alloy with a uniform RE-rich grain boundary phase lead to high anisotropy of the refined powders,acquiring degrees of alignment(DOA) of 0.62 and 0.54, respectively. The RE-rich phase aggregation results in a deteriorated DOA of the powders due to the drastic disproportionation rate, while a thin and uniform RE-rich phase distribution is beneficial for DOA. A reaction model of the initial particle microstructure is proposed for optimizing the HDDR powder anisotropy. 展开更多
关键词 hydrogenation disproportionation desorption recombination(HDDR) ANISOTROPY RE-rich phase initial microstructure
下载PDF
Why a mosquito leg possesses superior load-bearing capacity on water:Experimentals
7
作者 Xiang-Qing Kong Jian-Lin Liu Cheng-Wei Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期335-341,共7页
Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this ext... Mosquitoes possess the striking ability to walk on water because each of their legs has a huge water supporting force(WSF) that is 23 times their body weight.Aiming at a full understanding of the origins of this extremely large force,in this study,we concentrate on two aspects of it:the intrinsic properties of the leg surface and the active control of the initial stepping angle of the whole leg.Using a measurement system that we developed ourselves,the WSFs for the original leg samples are compared with those whose surface wax and microstructures have been removed and with those of a different stiffness.The results show that leg f exibility plays a dominant role over surface wax and microstructures on the leg surface in creating the supporting force.Moreover,we discuss the dependence relationship between the maximum WSF and the initial stepping angle,which indicates that the mosquito can regulate this angle to increase or decrease the WSF during landing or takeoff.These finding are helpful for uncovering the locomotion mechanism of aquatic insects and for providing inspiration for the design of microfluids miniature boats,biomimetic robots,and microsensors. 展开更多
关键词 Water supporting force Wax coating Surface microstructures Flexibility initial stepping angle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部