We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on ...This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 ...Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.展开更多
A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems i...A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existenc...We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existence of this problem is proved.Examples are given to illustrate the effectiveness of our results.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The ...In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.展开更多
In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish...In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.展开更多
In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtain...In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.展开更多
We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation l...We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.展开更多
In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper a...In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.展开更多
This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By u...This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.展开更多
Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spa...Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.展开更多
In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder typ...In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder type.Our results presented here unify,generalize and significantly improve many known results in the literature.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘This paper studies the global existence of the classical solutions to the following problem:This problem describes the nonlinear vibrations of finite rods with nonlinear vis-coelasticity. Under certain conditions on σand f , we obtained the unique existence of the global classical solution of this problem.
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金Supported by the Natural Science Foundation of Hunan Province(06JJ50008) Supported by the Natural Science Foundation of Guangdong Province(7004569)
文摘Suffcient conditions for the existence of at least one solution of two-point boundary value problems for second order nonlinear differential equations [φ(x(t))] + kx(t) + g(t,x(t)) = p(t),t ∈(0,π) x(0) = x(π) = 0 are established,where [φ(x)] =(|x |p-2x) with p > 1.Our result is new even when [φ(x)] = x in above problem,i.e.p = 2.Examples are presented to illustrate the effciency of the theorem in this paper.
文摘A class of singularly perturbed initial boundary value problems for the reaction diffusion equations in a part of domain are considered. Using the operator theory the asymptotic behavior of solution for the problems is studied.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
基金supported by Shandong Provincial Natural Science Foundation of China(ZR2020MA016)supported by the National Natural Science Foundation of China(62073153).
文摘We investigate a class of boundary value problems for nonlinear impulsive fractional differential equations with a parameter.By the deduction of Altman’s theorem and Krasno-selskii’s fixed point theorem,the existence of this problem is proved.Examples are given to illustrate the effectiveness of our results.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘In this paper, we consider the boundary value problems of the form ey″ - f(x, e)y′ + g(x, e)y=0 (-a&lex&leb, 0<e1) y(-a)=a, y(b)=β where f(x,0) has several and multiple zeros on the interval [-a,b]. The conditions for exhibiting boundary and interior layers are given, and the corresponding asymptotic expansions of solutions are constructed.
文摘In this paper we study the forced oscillations of boundary value problems of a class of higher order functional partial differential equations.The principal tool is an everaging techniqe which enables one to establish oscillation in terms of related functional differential inequallities.
基金The NSF(1308085MA01,1508085QA01)of Anhui Provincethe Provincial Natural Science Research Project(KJ2014A010)of Anhui Colleges+1 种基金the National Natural Science Youth Foundation(11301004)of ChinaOutstanding Youth Key Foundation(2013SQRL087ZD)of Colleges and Universities in Anhui Province
文摘In this paper we discuss stochastic differential equations with a kind of periodic boundary value conditions(in sense of mean value). Appealing to the decomposition of equations, the existence of solutions is obtained by using the contraction mapping principle and Leray-Schauder fixed point theorem, respectively.
文摘We present a new method to calculate the focal value of ordinary differential equation by applying the theorem defined the relationship between the normal form and focal value,with the help of a symbolic computation language M ATHEMATICA,and extending the matrix representation method.This method can be used to calculate the focal value of any high order terms.This method has been verified by an example.The advantage of this method is simple and more readily applicable.the result is directly obtained by substitution.
文摘In this paper, we study a class of boundary value problems for conformable fractional differential equations under a new definition. Firstly, by using the monotone iterative technique and the method of coupled upper and lower solution, the sufficient condition for the existence of the boundary value problem is obtained, and the range of the solution is determined. Then the existence and uniqueness of the solution are proved by the proof by contradiction. Finally, a concrete example is given to illustrate the wide applicability of our main results.
文摘This paper considers the following boundary value problems for functional differential equations: x' (t) = f(t, xt) (0<t<b) ,x0 = x1, and x'(t) = f(t,xt, x' (t)) (0<t<b) , x0 = , x(b) = B. By using certain fixed point theorem based on degree theory,some sufficient conditions for solvability of the above problems are given.
文摘Abstract In this paper, the fixed point theorem is applied to investigate the existence of solutions of Sturm Liouville boundary value problems for nonlinear second order impulsive differential equations in Banach spaces.
基金Supported by the National Natural Science Foundation of China(10771117)the Foundation of School of Mathematics and System Science,Shandong University(306001)
文摘In this paper,we investigate the existence of symmetric solutions of singular nonlocal boundary value problems for systems of differential equations.Our analysis relies on a nonlinear alternative of Leray-schauder type.Our results presented here unify,generalize and significantly improve many known results in the literature.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.