期刊文献+
共找到151,437篇文章
< 1 2 250 >
每页显示 20 50 100
Association of preschool children behavior and emotional problems with the parenting behavior of both parents 被引量:1
1
作者 Su-Mei Wang Shuang-Qin Yan +4 位作者 Fang-Fang Xie Zhi-Ling Cai Guo-Peng Gao Ting-Ting Weng Fang-Biao Tao 《World Journal of Clinical Cases》 SCIE 2024年第6期1084-1093,共10页
BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.... BACKGROUND Parental behaviors are key in shaping children’s psychological and behavioral development,crucial for early identification and prevention of mental health issues,reducing psychological trauma in childhood.AIM To investigate the relationship between parenting behaviors and behavioral and emotional issues in preschool children.METHODS From October 2017 to May 2018,7 kindergartens in Ma’anshan City were selected to conduct a parent self-filled questionnaire-Health Development Survey of Preschool Children.Children’s Strength and Difficulties Questionnaire(Parent Version)was applied to measures the children’s behavioral and emotional performance.Parenting behavior was evaluated using the Parental Behavior Inventory.Binomial logistic regression model was used to analyze the association between the detection rate of preschool children’s behavior and emotional problems and their parenting behaviors.RESULTS High level of parental support/participation was negatively correlated with conduct problems,abnormal hyperactivity,abnormal total difficulty scores and abnormal prosocial behavior problems.High level of maternal support/participation was negatively correlated with abnormal emotional symptoms and abnormal peer interaction in children.High level of parental hostility/coercion was positively correlated with abnormal emotional symptoms,abnormal conduct problems,abnormal hyperactivity,abnormal peer interaction,and abnormal total difficulty scores in children(all P<0.05).Moreover,paternal parenting behaviors had similarly effects on behavior and emotional problems of preschool children compared with maternal parenting behaviors(all P>0.05),after calculating ratio of odds ratio values.CONCLUSION Our study found that parenting behaviors are associated with behavioral and emotional issues in preschool children.Overall,the more supportive or involved the parents are,the fewer behavioral and emotional problems the children experience;conversely,the more hostile or controlling the parents are,the more behavioral and emotional problems the children face.Moreover,the impact of fathers’parenting behaviors on preschool children’s behavior and emotions is no less significant than that of mothers’parenting behaviors. 展开更多
关键词 CHILDREN Preschool age PARENTING BEHAVIORAL Parenting problems
下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
2
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
下载PDF
An Effective Meshless Approach for Inverse Cauchy Problems in 2D and 3D Electroelastic Piezoelectric Structures
3
作者 Ziqiang Bai Wenzhen Qu Guanghua Wu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2955-2972,共18页
In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within... In the past decade,notable progress has been achieved in the development of the generalized finite difference method(GFDM).The underlying principle of GFDM involves dividing the domain into multiple sub-domains.Within each sub-domain,explicit formulas for the necessary partial derivatives of the partial differential equations(PDEs)can be obtained through the application of Taylor series expansion and moving-least square approximation methods.Consequently,the method generates a sparse coefficient matrix,exhibiting a banded structure,making it highly advantageous for large-scale engineering computations.In this study,we present the application of the GFDM to numerically solve inverse Cauchy problems in two-and three-dimensional piezoelectric structures.Through our preliminary numerical experiments,we demonstrate that the proposed GFDMapproach shows great promise for accurately simulating coupled electroelastic equations in inverse problems,even with 3%errors added to the input data. 展开更多
关键词 Generalized finite difference method meshless method inverse Cauchy problems piezoelectric problems electroelastic analysis
下载PDF
Highly Accurate Golden Section Search Algorithms and Fictitious Time Integration Method for Solving Nonlinear Eigenvalue Problems
4
作者 Chein-Shan Liu Jian-Hung Shen +1 位作者 Chung-Lun Kuo Yung-Wei Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1317-1335,共19页
This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solve... This study sets up two new merit functions,which are minimized for the detection of real eigenvalue and complex eigenvalue to address nonlinear eigenvalue problems.For each eigen-parameter the vector variable is solved from a nonhomogeneous linear system obtained by reducing the number of eigen-equation one less,where one of the nonzero components of the eigenvector is normalized to the unit and moves the column containing that component to the right-hand side as a nonzero input vector.1D and 2D golden section search algorithms are employed to minimize the merit functions to locate real and complex eigenvalues.Simultaneously,the real and complex eigenvectors can be computed very accurately.A simpler approach to the nonlinear eigenvalue problems is proposed,which implements a normalization condition for the uniqueness of the eigenvector into the eigenequation directly.The real eigenvalues can be computed by the fictitious time integration method(FTIM),which saves computational costs compared to the one-dimensional golden section search algorithm(1D GSSA).The simpler method is also combined with the Newton iterationmethod,which is convergent very fast.All the proposed methods are easily programmed to compute the eigenvalue and eigenvector with high accuracy and efficiency. 展开更多
关键词 Nonlinear eigenvalue problem quadratic eigenvalue problem two new merit functions golden section search algorithm fictitious time integration method
下载PDF
Optimal Shape Factor and Fictitious Radius in the MQ-RBF:Solving Ill-Posed Laplacian Problems
5
作者 Chein-Shan Liu Chung-Lun Kuo Chih-Wen Chang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3189-3208,共20页
To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection techniq... To solve the Laplacian problems,we adopt a meshless method with the multiquadric radial basis function(MQRBF)as a basis whose center is distributed inside a circle with a fictitious radius.A maximal projection technique is developed to identify the optimal shape factor and fictitious radius by minimizing a merit function.A sample function is interpolated by theMQ-RBF to provide a trial coefficient vector to compute the merit function.We can quickly determine the optimal values of the parameters within a preferred rage using the golden section search algorithm.The novel method provides the optimal values of parameters and,hence,an optimal MQ-RBF;the performance of the method is validated in numerical examples.Moreover,nonharmonic problems are transformed to the Poisson equation endowed with a homogeneous boundary condition;this can overcome the problem of these problems being ill-posed.The optimal MQ-RBF is extremely accurate.We further propose a novel optimal polynomial method to solve the nonharmonic problems,which achieves high precision up to an order of 10^(−11). 展开更多
关键词 Laplace equation nonharmonic boundary value problem Ill-posed problem maximal projection optimal shape factor and fictitious radius optimal MQ-RBF optimal polynomial method
下载PDF
Identifying multidisciplinary problems from scientific publications based on a text generation method
6
作者 Ziyan Xu Hongqi Han +2 位作者 Linna Li Junsheng Zhang Zexu Zhou 《Journal of Data and Information Science》 CSCD 2024年第3期213-237,共25页
Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the... Purpose:A text generation based multidisciplinary problem identification method is proposed,which does not rely on a large amount of data annotation.Design/methodology/approach:The proposed method first identifies the research objective types and disciplinary labels of papers using a text classification technique;second,it generates abstractive titles for each paper based on abstract and research objective types using a generative pre-trained language model;third,it extracts problem phrases from generated titles according to regular expression rules;fourth,it creates problem relation networks and identifies the same problems by exploiting a weighted community detection algorithm;finally,it identifies multidisciplinary problems based on the disciplinary labels of papers.Findings:Experiments in the“Carbon Peaking and Carbon Neutrality”field show that the proposed method can effectively identify multidisciplinary research problems.The disciplinary distribution of the identified problems is consistent with our understanding of multidisciplinary collaboration in the field.Research limitations:It is necessary to use the proposed method in other multidisciplinary fields to validate its effectiveness.Practical implications:Multidisciplinary problem identification helps to gather multidisciplinary forces to solve complex real-world problems for the governments,fund valuable multidisciplinary problems for research management authorities,and borrow ideas from other disciplines for researchers.Originality/value:This approach proposes a novel multidisciplinary problem identification method based on text generation,which identifies multidisciplinary problems based on generative abstractive titles of papers without data annotation required by standard sequence labeling techniques. 展开更多
关键词 problem identification MULTIDISCIPLINARY Text generation Text classification
下载PDF
Oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions via Prufer transformation
7
作者 LI Zhi-yu LI Kun +2 位作者 CAI Jin-ming QIN Jian-fang ZHENG Zhao-wen 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期191-200,共10页
A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in ... A class of Sturm-Liouville problems with discontinuity is studied in this paper.The oscillation properties of eigenfunctions for Sturm-Liouville problems with interface conditions are obtained.The main method used in this paper is based on Prufer transformation,which is different from the classical ones.Moreover,we give two examples to verify our main results. 展开更多
关键词 Sturm-Liouville problem interface condition oscillatory solution
下载PDF
Quafu-Qcover:Explore combinatorial optimization problems on cloud-based quantum computers
8
作者 许宏泽 庄伟峰 +29 位作者 王正安 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 靳羽欣 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 增进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期104-115,共12页
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c... We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers. 展开更多
关键词 quantum cloud platform combinatorial optimization problems quantum software
下载PDF
An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets
9
作者 Weiwei Zhang Jiaqiang Li +2 位作者 Chao Wang Meng Li Zhi Rao 《Computers, Materials & Continua》 SCIE EI 2024年第6期4237-4257,共21页
In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ... In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs. 展开更多
关键词 Multimodal multi-objective optimization problem local PSs immune-inspired reproduction
下载PDF
Dirac method for nonlinear and non-homogenous boundary value problems of plates
10
作者 Xiaoye MAO Jiabin WU +2 位作者 Junning ZHANG Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期15-38,共24页
The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundar... The boundary value problem plays a crucial role in the analytical investigation of continuum dynamics. In this paper, an analytical method based on the Dirac operator to solve the nonlinear and non-homogeneous boundary value problem of rectangular plates is proposed. The key concept behind this method is to transform the nonlinear or non-homogeneous part on the boundary into a lateral force within the governing function by the Dirac operator, which linearizes and homogenizes the original boundary, allowing one to employ the modal superposition method for obtaining solutions to reconstructive governing equations. Once projected into the modal space, the harmonic balance method(HBM) is utilized to solve coupled ordinary differential equations(ODEs)of truncated systems with nonlinearity. To validate the convergence and accuracy of the proposed Dirac method, the results of typical examples, involving nonlinearly restricted boundaries, moment excitation, and displacement excitation, are compared with those of the differential quadrature element method(DQEM). The results demonstrate that when dealing with nonlinear boundaries, the Dirac method exhibits more excellent accuracy and convergence compared with the DQEM. However, when facing displacement excitation, there exist some discrepancies between the proposed approach and simulations;nevertheless, the proposed method still accurately predicts resonant frequencies while being uniquely capable of handling nonuniform displacement excitations. Overall, this methodology offers a convenient way for addressing nonlinear and non-homogenous plate boundaries. 展开更多
关键词 rectangular plate Dirac operator nonlinear boundary time-dependent boundary boundary value problem
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
11
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
Finite Difference-Peridynamic Differential Operator for Solving Transient Heat Conduction Problems
12
作者 Chunlei Ruan Cengceng Dong +2 位作者 Zeyue Zhang Boyu Chen Zhijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2707-2728,共22页
Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using t... Transient heat conduction problems widely exist in engineering.In previous work on the peridynamic differential operator(PDDO)method for solving such problems,both time and spatial derivatives were discretized using the PDDO method,resulting in increased complexity and programming difficulty.In this work,the forward difference formula,the backward difference formula,and the centered difference formula are used to discretize the time derivative,while the PDDO method is used to discretize the spatial derivative.Three new schemes for solving transient heat conduction equations have been developed,namely,the forward-in-time and PDDO in space(FT-PDDO)scheme,the backward-in-time and PDDO in space(BT-PDDO)scheme,and the central-in-time and PDDO in space(CT-PDDO)scheme.The stability and convergence of these schemes are analyzed using the Fourier method and Taylor’s theorem.Results show that the FT-PDDO scheme is conditionally stable,whereas the BT-PDDO and CT-PDDO schemes are unconditionally stable.The stability conditions for the FT-PDDO scheme are less stringent than those of the explicit finite element method and explicit finite difference method.The convergence rate in space for these three methods is two.These constructed schemes are applied to solve one-dimensional and two-dimensional transient heat conduction problems.The accuracy and validity of the schemes are verified by comparison with analytical solutions. 展开更多
关键词 Peridynamic differential operator finite difference method STABILITY transient heat conduction problem
下载PDF
Enriched Constant Elements in the Boundary Element Method for Solving 2D Acoustic Problems at Higher Frequencies
13
作者 Zonglin Li Zhenyu Gao Yijun Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2159-2175,共17页
The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models... The boundary element method(BEM)is a popular method for solving acoustic wave propagation problems,especially those in exterior domains,owing to its ease in handling radiation conditions at infinity.However,BEM models must meet the requirement of 6–10 elements per wavelength,using the conventional constant,linear,or quadratic elements.Therefore,a large storage size of memory and long solution time are often needed in solving higher-frequency problems.In this work,we propose two new types of enriched elements based on conventional constant boundary elements to improve the computational efficiency of the 2D acoustic BEM.The first one uses a plane wave expansion,which can be used to model scattering problems.The second one uses a special plane wave expansion,which can be used tomodel radiation problems.Five examples are investigated to showthe advantages of the enriched elements.Compared with the conventional constant elements,the new enriched elements can deliver results with the same accuracy and in less computational time.This improvement in the computational efficiency is more evident at higher frequencies(with the nondimensional wave numbers exceeding 100).The paper concludes with the potential of our proposed enriched elements and plans for their further improvement. 展开更多
关键词 Enriched boundary elements constant elements 2D acoustic problems higher frequency
下载PDF
Chien-physics-informed neural networks for solving singularly perturbed boundary-layer problems
14
作者 Long WANG Lei ZHANG Guowei HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1467-1480,共14页
A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp... A physics-informed neural network(PINN)is a powerful tool for solving differential equations in solid and fluid mechanics.However,it suffers from singularly perturbed boundary-layer problems in which there exist sharp changes caused by a small perturbation parameter multiplying the highest-order derivatives.In this paper,we introduce Chien's composite expansion method into PINNs,and propose a novel architecture for the PINNs,namely,the Chien-PINN(C-PINN)method.This novel PINN method is validated by singularly perturbed differential equations,and successfully solves the wellknown thin plate bending problems.In particular,no cumbersome matching conditions are needed for the C-PINN method,compared with the previous studies based on matched asymptotic expansions. 展开更多
关键词 physics-informed neural network(PINN) singular perturbation boundarylayer problem composite asymptotic expansion
下载PDF
The UNIFORM C^(0)ESTIMATE AND WEIGHTED ESTIMATE OF GENERALIZED CHRISTOFFEL-MINKOWSKI PROBLEMS
15
作者 ZHANG Jin-hu 《数学杂志》 2024年第5期397-405,共9页
In this paper,we consider generalized Christo®el-Minkowski problems as followsσ_(k)(u_(ij)+uδ_(ij))/σ_(l)(u_(ij)+uδ_(ij))=|u^(p-1)f(x),x∈S^(n),where 0≤l≤k≤n,p-1>0 and f is positive,and we establish the... In this paper,we consider generalized Christo®el-Minkowski problems as followsσ_(k)(u_(ij)+uδ_(ij))/σ_(l)(u_(ij)+uδ_(ij))=|u^(p-1)f(x),x∈S^(n),where 0≤l≤k≤n,p-1>0 and f is positive,and we establish the weighted gradient estimate and uniform C^(0)estimate for the positive convex even solutions,which is a generalization of Guan-Xia[1]and Guan[2]. 展开更多
关键词 weighted gradient estimate convex solution minkowski type problem
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
16
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
On the Method of Solution for the Non-Homogeneous Generalized Riemann-Hilbert Boundary Value Problems
17
作者 ZHANG Wen-wen LI Ping-run 《Chinese Quarterly Journal of Mathematics》 2024年第3期262-269,共8页
This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the th... This paper studies the non-homogeneous generalized Riemann-Hilbert(RH)problems involving two unknown functions.Using the uniformization theorem,such problems are transformed into the case of homogeneous type.By the theory of classical boundary value problems,we adopt a novel method to obtain the sectionally analytic solutions of problems in strip domains,and analyze the conditions of solvability and properties of solutions in various domains. 展开更多
关键词 Generalized Riemann-Hilbert problem Uniformization theorem Analytic solution Sokhotski-Plemelj formula
下载PDF
An 8-Node Plane Hybrid Element for StructuralMechanics Problems Based on the Hellinger-Reissner Variational Principle
18
作者 Haonan Li WeiWang +1 位作者 Quan Shen Linquan Yao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1277-1299,共23页
The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurat... The finite element method (FEM) plays a valuable role in computer modeling and is beneficial to the mechanicaldesign of various structural parts. However, the elements produced by conventional FEM are easily inaccurate andunstable when applied. Therefore, developing new elements within the framework of the generalized variationalprinciple is of great significance. In this paper, an 8-node plane hybrid finite element with 15 parameters (PHQ8-15β) is developed for structural mechanics problems based on the Hellinger-Reissner variational principle.According to the design principle of Pian, 15 unknown parameters are adopted in the selection of stress modes toavoid the zero energy modes.Meanwhile, the stress functions within each element satisfy both the equilibrium andthe compatibility relations of plane stress problems. Subsequently, numerical examples are presented to illustrate theeffectiveness and robustness of the proposed finite element. Numerical results show that various common lockingbehaviors of plane elements can be overcome. The PH-Q8-15β element has excellent performance in all benchmarkproblems, especially for structures with varying cross sections. Furthermore, in bending problems, the reasonablemesh shape of the new element for curved edge structures is analyzed in detail, which can be a useful means toimprove numerical accuracy. 展开更多
关键词 8-node plane hybrid element Hellinger-Reissner variational principle locking behaviors structural mechanics problems
下载PDF
Gastrointestinal problems in a valproic acid-induced rat model of autism: From maternal intestinal health to offspring intestinal function
19
作者 Sha Li Nan Zhang +2 位作者 Wang Li Han-Lai Zhang Xiao-Xi Wang 《World Journal of Psychiatry》 SCIE 2024年第7期1095-1105,共11页
BACKGROUND Autism spectrum disorder(ASD)is a developmental disorder characterized by social deficits and repetitive behavior.Gastrointestinal(GI)problems,such as constipation,diarrhea,and inflammatory bowel disease,co... BACKGROUND Autism spectrum disorder(ASD)is a developmental disorder characterized by social deficits and repetitive behavior.Gastrointestinal(GI)problems,such as constipation,diarrhea,and inflammatory bowel disease,commonly occur in patients with ASD.Previously,GI problems of ASD patients were attributed to intestinal inflammation and vertical mother-to-infant microbiome transmission.AIM To explore whether GI problems in ASD are related to maternal intestinal inflam-mation and gut microbiota abnormalities.METHODS An ASD rat model was developed using valproic acid(VPA).Enzyme-linked immunosorbent assay and fecal 16S rRNA sequencing were used to test GI changes.RESULTS VPA exposure during pregnancy led to pathological maternal intestinal changes,resulting in alterations in maternal gut microbiota.Additionally,the levels of inflammatory factors also increased.Moreover,prenatal exposure to VPA resulted in impaired duodenal motility in the offspring as well as increased levels of infla-mmatory factors.CONCLUSION GI problems in ASD may be associated with maternal intestinal inflammation and microbiota abnormality.Future research is required to find more evidence on the etiology and treatment of GI problems in ASD. 展开更多
关键词 Autism spectrum disorder Gastrointestinal problems Gut microbiota Intestinal inflammation Intestinal motility
下载PDF
Wavelet Multi-Resolution Interpolation Galerkin Method for Linear Singularly Perturbed Boundary Value Problems
20
作者 Jiaqun Wang Guanxu Pan +1 位作者 Youhe Zhou Xiaojing Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期297-318,共22页
In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be r... In this study,a wavelet multi-resolution interpolation Galerkin method(WMIGM)is proposed to solve linear singularly perturbed boundary value problems.Unlike conventional wavelet schemes,the proposed algorithm can be readily extended to special node generation techniques,such as the Shishkin node.Such a wavelet method allows a high degree of local refinement of the nodal distribution to efficiently capture localized steep gradients.All the shape functions possess the Kronecker delta property,making the imposition of boundary conditions as easy as that in the finite element method.Four numerical examples are studied to demonstrate the validity and accuracy of the proposedwavelet method.The results showthat the use ofmodified Shishkin nodes can significantly reduce numerical oscillation near the boundary layer.Compared with many other methods,the proposed method possesses satisfactory accuracy and efficiency.The theoretical and numerical results demonstrate that the order of theε-uniform convergence of this wavelet method can reach 5. 展开更多
关键词 Wavelet multi-resolution interpolation Galerkin singularly perturbed boundary value problems mesh-free method Shishkin node boundary layer
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部