期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
Mg-doped,carbon-coated,and prelithiated SiO_(x) as anode materials with improved initial Coulombic efficiency for lithium-ion batteries
1
作者 Bin Liu Jie Liu +1 位作者 Cheng Zhong Wenbin Hu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期204-214,共11页
Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium si... Silicon suboxide(SiO_(x),x≈1)is promising in serving as an anode material for lithium-ion batteries with high capacity,but it has a low initial Coulombic efficiency(ICE)due to the irreversible formation of lithium silicates during the first cycle.In this work,we modify SiO_(x) by solid-phase Mg doping reaction using low-cost Mg powder as a reducing agent.We show that Mg reduces SiO_(2) in SiO_(x) to Si and forms MgSiO_(3) or Mg_(2)SiO_(4).The MgSiO_(3) or Mg_(2)SiO_(4) are mainly distributed on the surface of SiO_(x),which suppresses the irreversible lithium-ion loss and enhances the ICE of SiO_(x).However,the formation of MgSiO_(3) or Mg_(2)SiO_(4) also sacrifices the capacity of SiO_(x).Therefore,by controlling the reaction process between Mg and SiO_(x),we can tune the phase composition,proportion,and morphology of the Mg-doped SiO_(x) and manipulate the performance.We obtain samples with a capacity of 1226 mAh g^(–1) and an ICE of 84.12%,which show significant improvement over carbon-coated SiO_(x) without Mg doping.By the synergistical modification of both Mg doping and prelithiation,the capacity of SiO_(x) is further increased to 1477 mAh g^(–1) with a minimal compromise in the ICE(83.77%). 展开更多
关键词 initial Coulombic efficiency lithium-ion batteries magnesium doping prelithiation silicon suboxide
下载PDF
Engineering Mesoporous Structure in Amorphous Carbon Boosts Potassium Storage with High Initial Coulombic Efficiency 被引量:5
2
作者 Ruiting Guo Xiong Liu +6 位作者 Bo Wen Fang Liu Jiashen Meng Peijie Wu Jinsong Wu Qi Li Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第11期39-50,共12页
Amorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries;however,its abundant defects or micropores generally capture K ions,thus resulting in high irreversible capacity... Amorphous carbon shows great potential as an anode material for high-performance potassium-ion batteries;however,its abundant defects or micropores generally capture K ions,thus resulting in high irreversible capacity with low initial Coulombic efficiency(ICE)and limited practical application.Herein,pore engineering via a facile self-etching strategy is applied to achieve mesoporous carbon(meso-C)nanowires with interconnected framework.Abundant and evenly distributed mesopores could provide short K^+ pathways for its rapid diffusion.Compared to microporous carbon with highly disordered structure,the meso-C with Zn-catalyzed short-range ordered structure enables more K^+to reversibly intercalate into the graphitic layers.Consequently,the mesoC shows an increased capacity by ~100 mAh g^-1 at 0.1 A g^-1,and the capacity retention is 70.7% after 1000 cycles at 1 A g^-1.Multiple in/ex situ characterizations reveal the reversible structural changes during the charging/discharging process.Particularly,benefiting from the mesoporous structure with reduced specific surface area by 31.5 times and less defects,the meso-C generates less irreversible capacity with high ICE up to 76.7%,one of the best reported values so far.This work provides a new perspective that mesopores engineering can effectively accelerate K^+ diffusion and enhance K^+ adsorption/intercalation storage. 展开更多
关键词 Potassium-ion battery Mesopores engineering Storage mechanism Initial Coulombic efficiency
下载PDF
Natural Stibnite for Lithium‑/Sodium‑Ion Batteries:Carbon Dots Evoked High Initial Coulombic Efficiency 被引量:4
3
作者 Yinger Xiang Laiqiang Xu +7 位作者 Li Yang Yu Ye Zhaofei Ge Jiae Wu Wentao Deng Guoqiang Zou Hongshuai Hou Xiaobo Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第8期208-228,共21页
The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural ... The application of Sb_(2)S_(3)with marvelous theoretical capacity for alkali metal-ion batteries is seriously limited by its poor electrical conductivity and low initial coulombic efficiency(ICE).In this work,natural stibnite modified by carbon dots(Sb_(2)S_(3)@xCDs)is elaborately designed with high ICE.Greatly,chemical processes of local oxidation–partial reduction–deep coupling for stibnite reduction of CDs are clearly demonstrated,confirmed with in situ high-temperature X-ray diffraction.More impressively,the ICE for lithium-ion batteries(LIBs)is enhanced to 85%,through the effect of oxygen-rich carbon matrix on C–S bonds which inhibit the conversion of sulfur to sulfite,well supported by X-ray photoelectron spectroscopy characterization of solid electrolyte interphase layers helped with density functional theory calculations.Not than less,it is found that Sb–O–C bonds existed in the interface effectively promote the electronic conductivity and expedite ion transmission by reducing the bandgap and restraining the slip of the dislocation.As a result,the optimal sample delivers a tremendous reversible capacity of 660 mAh g^(−1)in LIBs at a high current rate of 5 A g^(−1).This work provides a new methodology for enhancing the electrochemical energy storage performance of metal sulfides,especially for improving the ICE. 展开更多
关键词 Carbon dots Sb_(2)S_(3) Initial Coulombic efficiency Interfacial bond ANODE
下载PDF
Recent advances in hard carbon anodes with high initial Coulombic efficiency for sodium-ion batteries 被引量:3
4
作者 Yanhua Wan Yao Liu +2 位作者 Dongliang Chao Wei Li Dongyuan Zhao 《Nano Materials Science》 EI CAS CSCD 2023年第2期189-201,共13页
Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a ... Initial Coulombic efficiency(ICE)has been widely adopted in battery research as a quantifiable indicator for the lifespan,energy density and rate performance of batteries.Hard carbon materials have been accepted as a promising anode family for sodium-ion batteries(SIBs)owing to their outstanding performance.However,the booming application of hard carbon anodes has been significantly slowed by the low ICE,leading to a reduced energy density at the cell level.This offers a challenge to develop high ICE hard carbon anodes to meet the applications of high-performance SIBs.Here,we discuss the definition and factors of ICE and describe several typical strategies to improve the ICE of hard carbon anodes.The strategies for boosting the ICE of such anodes are also systematically categorized into several aspects including structure design,surface engineering,electrolyte optimization and pre-sodiation.The key challenges and perspectives in the development of high ICE hard carbon anodes are also outlined. 展开更多
关键词 Sodium-ion battery Hard carbon Initial Coulombic efficiency Interface engineering ANODE
下载PDF
Boosting high initial coulombic efficiency of hard carbon by in-situ electrochemical presodiation 被引量:1
5
作者 Nannan Qin Yanyan Sun +5 位作者 Chao Hu Sainan Liu Zhigao Luo Xinxin Cao Shuquan Liang Guozhao Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期310-316,I0008,共8页
Hard carbon(HC)is a promising anode material for sodium ion batteries(SIBs),whereas inferior initial coulombic efficiency(ICE)severely limits its practical application.In the present work,we propose an in situ electro... Hard carbon(HC)is a promising anode material for sodium ion batteries(SIBs),whereas inferior initial coulombic efficiency(ICE)severely limits its practical application.In the present work,we propose an in situ electrochemical presodiation approach to improve ICE by mixing sodium biphenyl(Na-Bp)dimethoxyethane(DME)solution with DME-based ether electrolyte.A solid electrolyte interface(SEI)could be formed beforehand on the HC electrode and Na^(+)was absorbed to nanopores and graphene stacks,compensating for the sodium loss and preventing electrolyte decomposition during the initial charge and discharge cycle.By this way,the ICE of half-cells was increased to nearly 100%and that of full-cells from 45%to 96%with energy density from 132.9 to 230.5 W h kg^(-1).Our work provides an efficient and facile method for improving ICE,which can potentially promote the practical application of HCbased materials. 展开更多
关键词 Hard carbon In situ presodiation Initial coulombic efficiency Solid electrolyte interface Sodium-ion batteries
下载PDF
An almost full reversible lithium-rich cathode: Revealing the mechanism of high initial coulombic efficiency 被引量:1
6
作者 Dong Luo Jianming Fan +9 位作者 Zhuo Yao Huixian Xie Jiaxiang Cui Yajun Yang Xiaokai Ding Jiapeng Ji Shuxing Wu Ming Ling Chenyu Liu Zhan Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期120-126,I0003,共8页
Low initial Coulombic efficiency (ICE) is an important impediment to practical application of Li-rich layered oxides (LLOs), which is due to the irreversible oxygen release. It is generally considered that surface oxy... Low initial Coulombic efficiency (ICE) is an important impediment to practical application of Li-rich layered oxides (LLOs), which is due to the irreversible oxygen release. It is generally considered that surface oxygen vacancies are conducive to the improvement of ICE of LLOs. To reveal the relation of oxygen vacancies and ICE, sample PLO (Li-Mn-Cr-O) and its treated product (TLO) are comprehensive investigated in this work. During the treated process, part of oxygen atoms return to original constructed vacancies. It makes oxygen vacancies in sample TLO much poorer than those in sample PLO, and induces the formation of Li-poor spinel-layered integrated structure. Electrochemical measurement indicates the ICE of sample PLO is only 80.8%, while sample TLO is almost full reversible with the ICE of ~97.1%. In term of high-energy X-ray diffraction, scanning transmission electron microscopy, X-ray photoelectron spectroscopy and synchrotron hard/soft X-ray absorption spectroscopy, we discover that the ICE is difficult to be improved significantly just by building oxygen vacancies. LLOs with high ICE not only have to construct suitable oxygen vacancies, but also require other components with Li-poor structure to stabilize oxygen. This work provides deep insight into the mechanism of high ICE, and will contribute to the design and development of LLOs for next-generation high-energy lithium-ion batteries. 展开更多
关键词 Li-ion batteries Li-rich layered oxides Initial coulombic efficiency Oxygen vacancies
下载PDF
Relationship between initial efficiency and structure parameters of carbon anode material for Li-ion battery 被引量:1
7
作者 申建斌 唐有根 +1 位作者 梁逸曾 谭欣欣 《Journal of Central South University of Technology》 EI 2008年第4期484-487,共4页
The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was inve... The initial efficiency is a very important criterion for carbon anode material of Li-ion battery.The relationship between initial efficiency and structure parameters of carbon anode material of Li-ion battery was investigated by an artificial intelligence approach called Random Forests using D10,D50,D90,BET specific surface area and TP density as inputs,initial efficiency as output.The results give good classification performance with 91%accuracy.The variable importance analysis results show the impact of 5 variables on the initial efficiency descends in the order of D90,TP density,BET specific surface area,D50 and D10;smaller D90 and larger TP density have positive impact on initial efficiency.The contribution of BET specific surface area on classification is only 18.74%,which indicates the shortcoming of BET specific surface area as a widely used parameter for initial efficiency evaluation. 展开更多
关键词 Li-ion battery carbon anode material initial efficiency structure parameters
下载PDF
Sn Alloy and Graphite Addition to Enhance Initial Coulombic Efficiency and Cycling Stability of SiO Anodes for Li-Ion Batteries 被引量:1
8
作者 Xingyang Du Hanying Zhang +2 位作者 Xuexia Lan Bin Yuan Renzong Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第1期353-359,共7页
Silicon monoxide(SiO)has aroused increased attention as one of the most promising anodes for high-energy density Li-ion batteries.To enhance the initial Coulombic efficiencies(ICE)and cycle stability of SiO-based anod... Silicon monoxide(SiO)has aroused increased attention as one of the most promising anodes for high-energy density Li-ion batteries.To enhance the initial Coulombic efficiencies(ICE)and cycle stability of SiO-based anodes,a new facile composition and electrode design strategy have been adapted to fabricate a SiO-Sn-Co/graphite(G)anode.It achieves a unique structure where tiny milled SiO-Sn-Co particles are dispersed among two graphite layers.In this hybrid electrode,Sn-Co alloys promoted Li;extraction kinetics,and the holistic reversibility of SiO and graphite enhanced the electrical conductivity.The SiO-Sn-Co/G electrode delivered an average ICE of 77.6%and a reversible capacity of 640 mAh g^(-1)at 800 mA g^(-1),and the capacity retention was above 98%after 100 cycles,which was much higher than that of the SiO with an ICE of 55.3%and a capacity retention of 50%.These results indicated that this was reliable method to improve the reversibility and cycle ability of the SiO anode.Furthermore,based on its easy and feasible fabrication process,it may provide a suitable choice to combine other alloy anodes with the graphite anode. 展开更多
关键词 ball milling cycle performance initial Coulombic efficiency silicon monoxide tin-cobalt alloy
下载PDF
V-doped Co-free Li-rich layered oxide with enhanced oxygen redox reversibility for excellent voltage stability and high initial Coulombic efficiency
9
作者 Liping Tan Wenzhao Huang +5 位作者 Xiaoyan Xie Xiaola Li Ziyang Liang Zhan Lin Chenyu Liu Dong Luo 《Energy Materials and Devices》 2024年第3期97-108,共12页
Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is imp... Li-rich Mn-based oxides(LRMOs)hold great promise as next-generation cathode materials for high-energy Li-ion batteries because of their low cost and high capacity.Nevertheless,the practical application of LRMOs is impeded by their low initial Coulombic efficiency and rapid voltage decay.Herein,a V-doped layered-spinel coherent layer is constructed on the surface of a Co-free LRMO through a simple treatment with NH_(4)VO_(3).The layered-spinel coherent layer with 3D ion channels enhanced Li+diffusion efficiency,mitigates surface-inter-face reactions and suppresses irreversible oxygen release.Notably,V-doping significantly reduces the Bader charge of oxygen atoms,thereby impeding excessive oxidation of oxygen ions and further enhancing the stability of O-redox.The modified LRMO exhibites a remarkable initial Coulombic efficiency of 91.6%,signifi-cantly surpassing that of the original LRMO(74.4%).Furthermore,the treated sample showes an impressive capacity retention rate of 91.9%after 200 cycles,accompanied by a voltage decay of merely 0.47 mV per cycle.The proposed treatment approach is straightforward and significantly improves the initial Coulombic efficiency,voltage stability,and capacity stability of LRMO cathode materials,thus holding considerable promise for the development of high-energy Li-ion batteries. 展开更多
关键词 Co-free Li-rich layered oxide V-doped layered-spinel coherent layer voltage stability high initial Coulombic efficiency
下载PDF
Progress and challenges of prelithiation technology for lithium-ion battery 被引量:9
10
作者 Zhenyu Huang Zhe Deng +7 位作者 Yun Zhong Mingkang Xu Sida Li Xueting Liu Yu Zhou Kai Huang Yue Shen Yunhui Huang 《Carbon Energy》 SCIE CAS 2022年第6期1107-1132,共26页
Prelithiation technology is widely considered a feasible route to raise the energy density and elongate the cycle life of lithium-ion batteries.The principle of prelithiation is to introduce extra active Li ions in th... Prelithiation technology is widely considered a feasible route to raise the energy density and elongate the cycle life of lithium-ion batteries.The principle of prelithiation is to introduce extra active Li ions in the battery so that the lithium loss during the first charge and long-term cycling can be compensated.Such an effect does not need to change the major electrode material or battery structure and is compatible with the majority of current lithium-ion battery production lines.At this stage,various prelithiation methods have been reported,some of which are already in the pilot-scale production stage.But there is still no definitive development roadmap for prelithiation.In this review,we first introduce the influence of prelithiation on electrochemical performance from a theoretical point of view and then compare the pros and cons of different prelithiation methods in different battery manufacturing stages.Finally,we discuss the challenges and future development trends of prelithiation.We aim to build up a bridge between academic research and industrial application.Some engineering problems in the promotion of prelithiation technique are extensively discussed,including not only the implementation of prelithiation but also some collateral issues on battery designing and management. 展开更多
关键词 cycle life ELECTROCHEMISTRY initial coulombic efficiency lithium-ion battery prelithiation
下载PDF
Pre-sodiation strategy for superior sodium storage batteries 被引量:3
11
作者 Yongkai Xu Haozheng Sun +3 位作者 Cunshuang Ma Jingjing Gai Yanhua Wan Weihua Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第11期261-268,共8页
The irreversible consumption of sodium in the initial several cycles greatly led to the attenuation of capacity,which caused the low initial coulombic efficiency(ICE)and obvious poor cycle stability.Presodiation can e... The irreversible consumption of sodium in the initial several cycles greatly led to the attenuation of capacity,which caused the low initial coulombic efficiency(ICE)and obvious poor cycle stability.Presodiation can effectively improve the electrochemical performance by compensating the capacity loss in the initial cycle.Here,carbon-coated sodium-pretreated iron disulfide(NaFeS_(2)@C)has been synthesized through conventional chemical method and used in sodium metal battery as a cathode material.The calculated density of states(DOS)of NaFeS2@C is higher,which implies enhanced electron mobility and improved cycle reversibility.Because of the highly reversible conversion reaction and the compensation of irreversible capacity loss during the initial cycle,the Na/NaFeS_(2)@C battery achieves ultrahigh initial coulombic efficiency(96.7%)and remarkable capacity(751 mA·h·g^(-1) at 0.1 A·g^(-1)).In addition,highly reversible electrochemical reactions and ultra-thin NaF-rich solid electrolyte interphase(SEI)also benefit for the electrochemical performance,even at high current density of 100 A·g^(-1),it still exhibits a reversible capacity of 136 mA·h·g^(-1),and 343 mA·h·g^(-1) after 2500 cycles at 5.0 A·g^(-1).This work aims to bring up new insights to improve the ICE and stability of sodium metal batteries. 展开更多
关键词 Pre-sodiation Solid electrolyte interphase Initial coulombic efficiency Sodium metal batteries Interface ELECTROCHEMISTRY
下载PDF
High Initial Reversible Capacity and Long Life of Ternary SnO_(2)-Co-carbon Nanocomposite Anodes for Lithium-Ion Batteries 被引量:3
12
作者 Pan Deng Jing Yang +7 位作者 Shengyang Li Tian-E Fan Hong-Hui Wu Yun Mou Hui Huang Qiaobao Zhang Dong-Liang Peng Baihua Qu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期326-338,共13页
The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity lo... The two major limitations in the application of SnO_2 for lithium?ion battery(LIB) anodes are the large volume variations of SnO_2 during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic e ciency(ICE). To overcome these limitations, we developed composites of ultrafine SnO_2 nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N?doped carbon matrix using a Co?based metal–organic framework(ZIF?67). The formed Co additives and structural advantages of the carbon?confined SnO_2/Co nanocomposite e ectively inhibited Sn coarsening in the lithiated SnO_2 and mitigated its structural degradation while facilitating fast electronic transport and facile ionic di usion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability(~ 800 mAh g^(-1) at a high current density of 5 A g^(-1)), and long?term cycling stability(~ 760 mAh g^(-1) after 400 cycles at a current density of 0.5 A g^(-1)). This study will be helpful in developing high?performance Si(Sn)?based oxide, Sn/Sb?based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF?67 can also be used as composite templates. 展开更多
关键词 Ultrafine SnO_(2) nanostructures ZIF-67 frameworks Enhanced initial Coulombic efficiency Reversible conversion reaction
下载PDF
Spontaneous local redox reaction to passivate CNTs as lightweight current collector for high energy density lithium ion batteries 被引量:2
13
作者 Chao Lv Zhen Tong +4 位作者 Shi-Yuan Zhou Si-Yu Pan Hong-Gang Liao Yao Zhou Jun-Tao Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期553-561,I0013,共10页
Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulo... Extensive usage of highly conductive carbon materials with large specific surface area(e.g.,carbon nanotubes,CNTs)in lithium ion batteries(LIBs),especially as current collector of anodes,suffers from low initial coulombic efficiency(ICE),large interfacial resistance,and severe embrittlement,as the large specific surface area often results in severe interfacial decomposition of the electrolyte and the formation of thick and fluffy solid electrolyte interphase(SEI)during cycling of LIBs.Herein,we demonstrate that when the CNT-based current collector and Na foil(which are being stacked intimately upon each other)are being placed in Na+-based organic electrolyte,local redox reaction between the Na foil and the electrolyte would occur spontaneously,generating a thin and homogeneous NaF-based passivating layer on the CNTs.More importantly,we found that owing to the weak solvation behaviors of Na+in the organic electrolyte,the resulting passivation layer,which is rich in NaF,is thin and dense;when used as the anode current collector in LIBs,the pre-existing passivating layer can function effectively in isolating the anode from the solvated Li+,thus suppressing the formation of bulky SEI and the destructive intercalation of solvated Li+.The relevant half-cell(graphite as anode)exhibits a high ICE of 92.1%;the relevant pouch cell with thus passivated CNT film as current collectors for both electrodes(LiCoO_(2)as cathode,graphite as anode)displays a high energy density of 255 Wh kg^(-1),spelling an increase of 50%compared with that using the conventional metal current collectors. 展开更多
关键词 Lightweight current collector Passivating layer Initial coulombic efficiency High energy density storage
下载PDF
Rational design of stretchable and conductive hydrogel binder for highly reversible SiP2 anode
14
作者 Xuhao Liu Runzhe Yao +7 位作者 Siqi Wang Yaqing Wei Bin Chen Wei Liang Caiyun Tian Chengyu Nie De Li Yong Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期564-573,I0013,共11页
The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulti... The emerging SiP2with large capacity and suitable plateau is proposed to be the alternative anode for Li-ion batteries.However,typical SiP2still suffers from serious volume expansion and structural destruction,resulting in much Li-consumption and capacity fading.Herein,a novel stretchable and conductive Li-PAA@PEDOT:PSS binder is rationally designed to improve the cyclability and reversibility of SiP2.Interestingly,such Li-PAA@PEDOT:PSS hydrogel enables a better accommodation of volume expansion than PVDF binder(e.g.5.94% vs.68.73% of expansivity).More specially,the SiP2electrode with LiPAA@PEDOT:PSS binder is surprisingly found to enable unexpected structural recombination and selfhealing Li-storage processes,endowing itself with a high initial Coulombic efficiency(ICE) up to 93.8%,much higher than PVDF binder(ICE=70.7%) as well.Such unusual phenomena are investigated in detail for Li-PAA@PEDOT:PSS,and the possible mechanism shows that its Li-PAA component enables to prevent the pulverization of SiP2nanoparticles while the PEDOT:PSS greatly bridges fast electronic connection for the whole electrode.Consequently,after being further composited with carbon matrix,the SiP2/C with LiPAA@PEDOT:PSS hydrogel exhibits high reversibility(ICE> 93%),superior cyclability(>450 cycles),and rate capability(1520 mAh/g at 2000 mA/g) for LIBs.This highly stretchable and conductive binder design can be easily extended to other alloying materials toward advanced energy storage. 展开更多
关键词 SiP_(2) BINDER Initial Coulombic efficiency Anode material Lithium ion batteries
下载PDF
Defective layered Mn-based cathode materials with excellent performance via ion exchange for Li-ion batteries
15
作者 Yongheng Si Kun Bai +4 位作者 Yaxin Wang Han Lu Litong Liu Ziyan Long Yujuan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期537-546,I0012,共11页
Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control th... Defective layered Mn-based materials were synthesized by Li/Na ion exchange to improve their electrochemical activity and Coulombic efficiency.The annealing temperature of the Na precursors was important to control the P3-P2 phase transition,which directly affected the structure and electrochemical characteristics of the final products obtained by ion exchange.The O3-Li_(0.78)[Li_(0.25)Fe_(0.075)Mn_(0.675)]O_(δ) cathode made from a P3-type precursor calcined at 700℃ was analyzed using X-ray photoelectron spectrometry and electron paramagnetic resonance.The results showed that the presence of abundant trivalent manganese and defects resulted in a discharge capacity of 230 mAh/g with an initial Coulombic efficiency of about 109%.Afterward,galvanostatic intermittent titration was performed to examine the Li^(+) ion diffusion coefficients,which affected the reversible capacity.First principles calculations suggested that the charge redistribution induced by oxygen vacancies(OV_(s))greatly affected the local Mn coordination environment and enhanced the structural activity.Moreover,the Li-deficient cathode was a perfect match for the pre-lithiation anode,providing a novel approach to improve the initial Coulombic efficiency and activity of Mn-based materials in the commercial application. 展开更多
关键词 Ion exchange Defective cathode materials Oxygen vacancies Initial coulombic efficiency DFT calculations
下载PDF
Low-temperature-pyrolysis preparation of nanostructured graphite towards rapid potassium storage with high initial Coulombic efficiency
16
作者 Jingke Ren Boyu Xing +7 位作者 Wen Luo Binyang Luo Xinfei Wu Xin Yan Wencong Feng Feiyue Wang Chaojie Cheng Liqiang Mai 《Nano Research》 SCIE EI CSCD 2024年第6期5138-5147,共10页
Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produ... Industrially prepared artificial graphite(AG)is attractive for potassium-ion batteries(PIBs),but its rate performance is poor and the production process is energy intensive,so developing an efficient strategy to produce novel graphite with low energy consumption and high performance is economically important.Herein,a nanostructured graphite composed of multi-walled carbon nanotubes(MWCNTs)and graphite shells was prepared by one-pot method through low-temperature pyrolysis of iron-based metal-organic framework(MOF)and carbon source.The high graphitization degree of nanostructured graphite makes the initial Coulombic efficiency(ICE)exceed 80%,and the three-dimensional(3D)conductive network ensures a specific capacity of 234 mAh·g^(−1)after 1000 cycles at a high current density of 500 mA·g^(−1).In addition,the typical graphite potassium storage mechanism is also demonstrated by in situ X-ray diffraction(XRD)and in situ Raman spectroscopy,and its practicality is also proved by the voltage of the full cells.This work provides a feasible way to optimize the practical production process of AG and expand its application in energy storage. 展开更多
关键词 graphite anode potassium-ion batteries high graphitization degree low-temperature pyrolysis initial Coulombic efficiency
原文传递
Molten-LiCl induced thermochemical prelithiation of SiOx:Regulating the active Si/O ratio for high initial Coulombic efficiency 被引量:4
17
作者 Yang Li Yong Qian +2 位作者 Jie Zhou Ning Lin Yitai Qian 《Nano Research》 SCIE EI CSCD 2022年第1期230-237,共8页
The low initial Coulombic efficiency(ICE)of SiOx anode caused by the irreversible generation of LiySiOz and Li20 during lithiation process limits its application for high energy-density lithium-ion batteries.Herein,we... The low initial Coulombic efficiency(ICE)of SiOx anode caused by the irreversible generation of LiySiOz and Li20 during lithiation process limits its application for high energy-density lithium-ion batteries.Herein,we report a molten-salt-induced thermochemical.prelithiation strategy for regulating the electrochemically active Si/O ratio of SiOx and thus enhancing ICE through thermal treatment of pre-synthesized LiNH2-coated SiOx in molten LiCl at 700℃.Bulk SiOx micro-particle was transformed into pomegranatelike prelithiated micro-cluster composite(M-Li-SiOx)with SiOx core and outer nano-sized agglomerates consisting of Li2Si20s,SiO2,and Si.Through the analysis of the reaction intermediates,molten-UC!could initiate reactions and promote mass transfer by the continuous extraction of oxygen component from SiOx particle inner in the form of inert Li2Si20s and SiO2 nanotubes to realize the.prelithiation.The degree of prelithiation can be regulated by adjusting the coating amount of LiNH2 layer,and the resulted M-Li-SiOx displays a prominent improvement of ICE from 58.73%to 88.2%.The graphite/M-Li-SiOx(8:2)composite electrode delivers a.discharge capacity of 497.29 mAh·g^(-1) with an ICE of 91.79%.By pairing graphite/M-Li-SiOx anode and LiFeP04 cathode in a full-cell an enhancement of energy density of 37.25%is realized compared with the full-cell containing graphite/SiOx anode.Furthermore,,ex-situ X-ray photoelectron spectroscopy(XPS)/Raman/X-ray diffraction(XRD)and related electrochemical measurements reveal the SiOx core and Si of M-Li-SiOx participate in the lithiation,and pre-generated Li2Si20s with u+diffusivity and pomegranate-like.structure reduces the reaction resistance and interface impedance of the solid electrolyte interphase(SEI)film. 展开更多
关键词 initial Coulombic efficiency thermochemical prelithiation liquid coating MOLTEN-SALT mass transfer
原文传递
Fabricating multi-porous carbon anode with remarkable initial coulombic efficiency and enhanced rate capability for sodium-ion batteries 被引量:4
18
作者 Yong Tong Yuanji Wu +3 位作者 Zihao Liu Yongshi Yin Yingjuan Sun Hongyan Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第1期127-132,共6页
Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advan... Due to the abundant sodium reserves and high safety,sodium ion batteries(SIBs)are foreseen a promising future.While,hard carbon materials are very suitable for the anode of SIBs owing to their structure and cost advantages.However,the unsatisfactory initial coulombic efficiency(ICE)is one of the crucial blemishes of hard carbon materials and the slow sodium storage kinetics also hinders their wide application.Herein,with spherical nano SiO_(2)as pore-forming agent,gelatin and polytetrafluoroethylene as carbon sources,a multi-porous carbon(MPC)material can be easily obtained via a co-pyrolysis method,by which carbonization and template removal can be achieved synchronously without the assistance of strong acids or strong bases.As a result,the MPC anode exhibited remarkable ICE of 83%and a high rate capability(208 m Ah/g at 5 A/g)when used in sodium-ion half cells.Additionally,coupling with Na3V2(PO4)3as the cathode to assemble full cells,the as-fabricated MPC//NVP full cell delivered a good rate capability(146 m Ah/g at 5 A/g)as well,implying a good application prospect the MPC anode has. 展开更多
关键词 Multi-porous carbon Initial coulombic efficiency Rate capability Sodium ion batteries Silica template
原文传递
Improving the Initial Coulombic Efficiency of Carbonaceous Materials for Li/Na‑Ion Batteries:Origins,Solutions,and Perspectives 被引量:5
19
作者 Zheng Tang Siyu Zhou +6 位作者 Yuancheng Huang Hong Wang Rui Zhang Qi Wang Dan Sun Yougen Tang Haiyan Wang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期651-679,共29页
Carbonaceous materials for lithium(Li)/sodium(Na)-ion batteries have attracted significant attention because of their widespread availability,renewable nature,and low cost.During the past decades,although great effort... Carbonaceous materials for lithium(Li)/sodium(Na)-ion batteries have attracted significant attention because of their widespread availability,renewable nature,and low cost.During the past decades,although great efforts have been devoted to developing high-performance carbonaceous materials with high capacity,long life span,and excellent rate capability,the low initial Coulombic efficiency(ICE)of high-capacity carbonaceous materials seriously limits their practical applications.Various methods have been successfully exploited,and a revolutionary impact has been achieved through the utilization of different techniques.Different carbonaceous materials possess different ion storage mechanisms,which means that the initial capacity loss may vary.However,there has rarely been a special review about the origins of and progress in the ICE for carbonaceous materials from the angle of the crystal structure.Hence,in this review,the structural differences between and ion storage mechanisms of various carbonaceous materials are first introduced.Then,we deduce the correlative factors of low ICE and thereafter summarize the proposed strategies to address these issues.Finally,some challenges,perspectives,and future directions on the ICE of carbonaceous materials are given.This review will provide deep insights into the challenges of improving the ICE of carbonaceous anodes for high-energy Li/Na-ion batteries,which will greatly contribute to their commercialization process. 展开更多
关键词 Lithium/sodium-ion batteries Initial Coulombic efficiency Carbonaceous materials Energy storage
原文传递
Ultrafast presodiation of graphene anodes for high-efficiency and high-rate sodium-ion storage 被引量:5
20
作者 Ganyu Zheng Qiaowei Lin +6 位作者 Jiabin Ma Jun Zhang Yan-Bing He Xian Tang Feiyu Kang Wei Lv Quan-Hong Yang 《InfoMat》 SCIE CAS 2021年第12期1445-1454,共10页
The low initial Coulombic efficiency(ICE)is a significant problem hindering the practical uses of carbon anodes in sodium-ion batteries(SIBs),especially for the carbons with large surface area.Presodiation is an effec... The low initial Coulombic efficiency(ICE)is a significant problem hindering the practical uses of carbon anodes in sodium-ion batteries(SIBs),especially for the carbons with large surface area.Presodiation is an effective way to solve the above problem,but it always needs complicated operations and cannot suppress the unavoidable electrolyte decomposition in the assembled battery.Herein,we develop an ultrafast chemical presodiation method for reduced graphene oxide(rGO)using sodium naphthalene(Na-Nt)dissolved in dimethoxyethane(DME)solvent as a presodiation reagent.The presodiation effectively improves the ICE of rGO to 96.8%and forms an artificial solid electrolyte interphase(SEI)on its surface due to the decomposition of the formed complex between Na+and DME.The formed artificial SEI suppresses the excessive decomposition of electrolytes in the assembled battery,leading to a formation of uniform and inorganic component–rich SEI on rGO surface,which enables a rapid interfacial ion transfer.Therefore,the presodiated rGO showed excellent rate performance with a high capacity of 198.5 mAh g^(-1) at 5 A g^(-1).Moreover,excellent cycle stability indicated by the high capacity retention of 68.4%over 1000 cycles was also achieved,showing the poten-tial to promote the practical uses of high-rate rGO anode in SIBs. 展开更多
关键词 high rate initial Coulombic efficiency presodiation sodium-ion batteries solid electrolyte interphase
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部