In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional techn...In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D- TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carder drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.展开更多
Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheatin...Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.展开更多
A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the amb...A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61376109,61434007,and 61176030)the Advanced Research Project of National University of Defense Technology,China(Grant No.0100066314001)
文摘In this paper, the effect of floating body effect (FBE) on a single event transient generation mechanism in fully depleted (FD) silicon-on-insulator (SOI) technology is investigated using three-dimensional technology computer-aided design (3D- TCAD) numerical simulation. The results indicate that the main SET generation mechanism is not carder drift/diffusion but floating body effect (FBE) whether for positive or negative channel metal oxide semiconductor (PMOS or NMOS). Two stacking layout designs mitigating FBE are investigated as well, and the results indicate that the in-line stacking (IS) layout can mitigate FBE completely and is area penalty saving compared with the conventional stacking layout.
基金supported by National Natural Science Foundation of China(No.11575240)Key Program of Research and Development of Hefei Science Center,CAS(grant 2016HSC-KPRD002)
文摘Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinementfusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI(PCI e Xtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module,the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and overcurrent protection system has the advantages of setting forbidden time and isolation transmission.
基金This work is funded by the UK BEIS project‘A low carbon heating system for existing public buildings employing a highly innovative multiple-throughout-flowing micro-channel solar-panel-array and a novel mixed indoor/outdoor air source heat pump’(LCHTIF1010).
文摘A novel dual source vapor injection heat pump(DSVIHP)using exhaust and ambient air is proposed.The air exhausted from the building first releases energy to the medium-pressure evaporator and is then mixed with the ambient air to heat the low-pressure evaporator.A vapor injection(VI)compressor of two inlets is connected with the low and medium pressure evaporators.It’s first time that a VI compressor is employed to recover the ventilation heat.The system can minimize the ventilation heat loss and provide a unique defrosting approach by using the exhaust waste heat.Fundamentals of the proposed DSVIHP are illustrated.Mathematical models are built.Both energetic and exergetic analyses are carried out under variable conditions.The results indicate that the DSVIHP has superior thermodynamic performance.The superiority is more appreciable at a lower ambient temperature.It has a higher COP than the conventional vapor injection heat pump and air source heat pump by 11.3%and 23.2%respectively at an ambient temperature of-10°C and condensation temperature of 45°C.The waste heat recovery ratio from the exhaust air is more than 100%.The novel DSVIHP has great potential in the cold climate area application.