The behaviours of three types of hot-hole injections in ultrashort channel lightly doped drain (LDD) nMOSFETs with ultrathin oxide under an alternating stress have been compared. The three types of hot-hole injectio...The behaviours of three types of hot-hole injections in ultrashort channel lightly doped drain (LDD) nMOSFETs with ultrathin oxide under an alternating stress have been compared. The three types of hot-hole injections, i.e. low gate voltage hot hole injection (LGVHHI), gate-induced drain leakage induced hot-hole injection (GIDLIHHI) and substrate hot-hole injection (SHHI), have different influences on the devices damaged already by the previous hot electron injection (HEI) because of the different locations of trapping holes and interface states induced by the three types of injections, i.e. three types of stresses. Experimental results show that GIDLIHHI and LGVHHI cannot recover the degradation of electron trapping, but SHHI can. Although SHHI can recover the device's performance, the recovery is slight and reaches saturation quickly, which is suggested here to be attributed to the fact that trapped holes are too few and the equilibrium is reached between the trapping and releasing of holes which can be set up quickly in the ultrathin oxide.展开更多
The author treated 16 cases of sequelae of neuralgia after herpes zoster withacupuncture, moxibustion and point injection in the affected region, and all cases were cured.
Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-dif...Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing, cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.展开更多
We fabricate pentacene-based organic field effect transistors(OFETs),inserting a transition metal oxide(V_(2)O_(5))layer between the pentacene and Al source−drain(S/D)electrodes.The performance of the devices with V_(...We fabricate pentacene-based organic field effect transistors(OFETs),inserting a transition metal oxide(V_(2)O_(5))layer between the pentacene and Al source−drain(S/D)electrodes.The performance of the devices with V_(2)O_(5)/Al S/D electrodes is considerably improved compared to the pentacene−based OFET with only Al S/D electrodes.After the 10-nm V2O5 layer modification,the effective field-effect mobility of the devices increases from 2.7×10^(−3) cm^(2)/V⋅s to 8.93×10−1 cm^(2)/V⋅s.Owing to the change of the injection property,the effective threshold voltage(Vth)is changed from−7.5 V to−5 V and the on/off ratio shifts from 102 to 104.Moreover,the dispersion of sub−threshold current in the devices disappears.These performance improvements are ascribed to the low carrier injection barrier and the reduction of contact resistance.It is indicated that V2O5 layer modification is an effective approach to improve pentacene-based OFET performance.展开更多
In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonst...In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate A1203 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine- based A1CaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of A1GaN/CaN HEMT. Through the recessed-gate etching, the transconductanee increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with Tit----(0.20--1.59) p^s and Dit :(0.55-1.08)x 1012 cm-2.eV- 1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AIGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.展开更多
文摘The behaviours of three types of hot-hole injections in ultrashort channel lightly doped drain (LDD) nMOSFETs with ultrathin oxide under an alternating stress have been compared. The three types of hot-hole injections, i.e. low gate voltage hot hole injection (LGVHHI), gate-induced drain leakage induced hot-hole injection (GIDLIHHI) and substrate hot-hole injection (SHHI), have different influences on the devices damaged already by the previous hot electron injection (HEI) because of the different locations of trapping holes and interface states induced by the three types of injections, i.e. three types of stresses. Experimental results show that GIDLIHHI and LGVHHI cannot recover the degradation of electron trapping, but SHHI can. Although SHHI can recover the device's performance, the recovery is slight and reaches saturation quickly, which is suggested here to be attributed to the fact that trapped holes are too few and the equilibrium is reached between the trapping and releasing of holes which can be set up quickly in the ultrathin oxide.
文摘The author treated 16 cases of sequelae of neuralgia after herpes zoster withacupuncture, moxibustion and point injection in the affected region, and all cases were cured.
基金Supported by National Natural Science Foundation of China (20490224)
文摘Numerical simulation of injection molding have had success in predicting the behavior of polymer melt in extremely complicated geometries. Most of the current numerical solutions are based on finite-element/finite-difference/boundary-element/volume-control methods and the surface model. This paper discusses the development of an integrated CAE system for injection molding in detail, and presents the mathematics for numerical simulation of filling, packing, cooling, stress and warpage in injection molding. The developed system named as HsCAE3D is introduced at the end.
基金Supported by the National Natural Science Foundation under Grant No 61076065the Natural Science Foundation of Tianjin(No 07JCYBJC12700).
文摘We fabricate pentacene-based organic field effect transistors(OFETs),inserting a transition metal oxide(V_(2)O_(5))layer between the pentacene and Al source−drain(S/D)electrodes.The performance of the devices with V_(2)O_(5)/Al S/D electrodes is considerably improved compared to the pentacene−based OFET with only Al S/D electrodes.After the 10-nm V2O5 layer modification,the effective field-effect mobility of the devices increases from 2.7×10^(−3) cm^(2)/V⋅s to 8.93×10−1 cm^(2)/V⋅s.Owing to the change of the injection property,the effective threshold voltage(Vth)is changed from−7.5 V to−5 V and the on/off ratio shifts from 102 to 104.Moreover,the dispersion of sub−threshold current in the devices disappears.These performance improvements are ascribed to the low carrier injection barrier and the reduction of contact resistance.It is indicated that V2O5 layer modification is an effective approach to improve pentacene-based OFET performance.
基金supported by the National Key Science and Technology Special Project,China (Grant No. 2008ZX01002-002)the National Natural Science Foundation of China (Grant No. 60736033)
文摘In this paper, in order to solve the interface-trap issue and enhance the transconductance induced by high-k dielectric in metal-insulator-semiconductor (MIS) high electron mobility transistors (HEMTs), we demonstrate better performances of recessed-gate A1203 MIS-HEMTs which are fabricated by Fluorine-based Si3N4 etching and chlorine- based A1CaN etching with three etching times (15 s, 17 s and 19 s). The gate leakage current of MIS-HEMT is about three orders of magnitude lower than that of A1GaN/CaN HEMT. Through the recessed-gate etching, the transconductanee increases effectively. When the recessed-gate depth is 1.02 nm, the best interface performance with Tit----(0.20--1.59) p^s and Dit :(0.55-1.08)x 1012 cm-2.eV- 1 can be obtained. After chlorine-based etching, the interface trap density reduces considerably without generating any new type of trap. The accumulated chlorine ions and the N vacancies in the AIGaN surface caused by the plasma etching can degrade the breakdown and the high frequency performances of devices. By comparing the characteristics of recessed-gate MIS-HEMTs with different etching times, it is found that a low power chlorine-based plasma etching for a short time (15 s in this paper) can enhance the performances of MIS-HEMTs effectively.