期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments
1
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
下载PDF
Residual-Based False Data Injection Attacks Against Multi-Sensor Estimation Systems 被引量:4
2
作者 Haibin Guo Jian Sun Zhong-Hua Pang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第5期1181-1191,共11页
This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the meas... This paper investigates the security issue of multisensor remote estimation systems.An optimal stealthy false data injection(FDI)attack scheme based on historical and current residuals,which only tampers with the measurement residuals of partial sensors due to limited attack resources,is proposed to maximally degrade system estimation performance.The attack stealthiness condition is given,and then the estimation error covariance in compromised state is derived to quantify the system performance under attack.The optimal attack strategy is obtained by solving several convex optimization problems which maximize the trace of the compromised estimation error covariance subject to the stealthiness condition.Moreover,due to the constraint of attack resources,the selection principle of the attacked sensor is provided to determine which sensor is attacked so as to hold the most impact on system performance.Finally,simulation results are presented to verify the theoretical analysis. 展开更多
关键词 Cyber-physical systems(CPSs) false data injection(FDI)attacks remote state estimation stealthy attacks
下载PDF
Passivity-Based Robust Control Against Quantified False Data Injection Attacks in Cyber-Physical Systems 被引量:2
3
作者 Yue Zhao Ze Chen +2 位作者 Chunjie Zhou Yu-Chu Tian Yuanqing Qin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第8期1440-1450,共11页
Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false d... Secure control against cyber attacks becomes increasingly significant in cyber-physical systems(CPSs).False data injection attacks are a class of cyber attacks that aim to compromise CPS functions by injecting false data such as sensor measurements and control signals.For quantified false data injection attacks,this paper establishes an effective defense framework from the energy conversion perspective.Then,we design an energy controller to dynamically adjust the system energy changes caused by unknown attacks.The designed energy controller stabilizes the attacked CPSs and ensures the dynamic performance of the system by adjusting the amount of damping injection.Moreover,with the disturbance attenuation technique,the burden of control system design is simplified because there is no need to design an attack observer.In addition,this secure control method is simple to implement because it avoids complicated mathematical operations.The effectiveness of our control method is demonstrated through an industrial CPS that controls a permanent magnet synchronous motor. 展开更多
关键词 Cyber-physical systems energy controller energy conversion false data injection attacks L2 disturbance attenuation technology
下载PDF
Analysis of cascading failures of power cyber-physical systems considering false data injection attacks 被引量:4
4
作者 Jian Li Chaowei Sun Qingyu Su 《Global Energy Interconnection》 CAS CSCD 2021年第2期204-213,共10页
This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control func... This study considers the performance impacts of false data injection attacks on the cascading failures of a power cyber-physical system,and identifies vulnerable nodes.First,considering the monitoring and control functions of a cyber network and power flow characteristics of a power network,a power cyber-physical system model is established.Then,the influences of a false data attack on the decision-making and control processes of the cyber network communication processes are studied,and a cascading failure analysis process is proposed for the cyber-attack environment.In addition,a vulnerability evaluation index is defined from two perspectives,i.e.,the topology integrity and power network operation characteristics.Moreover,the effectiveness of a power flow betweenness assessment for vulnerable nodes in the cyberphysical environment is verified based on comparing the node power flow betweenness and vulnerability assessment index.Finally,an IEEE14-bus power network is selected for constructing a power cyber-physical system.Simulations show that both the uplink communication channel and downlink communication channel suffer from false data attacks,which affect the ability of the cyber network to suppress the propagation of cascading failures,and expand the scale of the cascading failures.The vulnerability evaluation index is calculated for each node,so as to verify the effectiveness of identifying vulnerable nodes based on the power flow betweenness. 展开更多
关键词 Power cyber-physical systems False date injection attack Cascading failure VULNERABILITY Power flow betweenness.
下载PDF
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
5
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
In-Vehicle Network Injection Attacks Detection Based on Feature Selection and Classification
6
作者 Haojie Ji Liyong Wang +3 位作者 Hongmao Qin Yinghui Wang Junjie Zhang Biao Chen 《Automotive Innovation》 EI CSCD 2024年第1期138-149,共12页
Detecting abnormal data generated from cyberattacks has emerged as a crucial approach for identifying security threats within in-vehicle networks.The transmission of information through in-vehicle networks needs to fo... Detecting abnormal data generated from cyberattacks has emerged as a crucial approach for identifying security threats within in-vehicle networks.The transmission of information through in-vehicle networks needs to follow specific data for-mats and communication protocols regulations.Typically,statistical algorithms are employed to learn these variation rules and facilitate the identification of abnormal data.However,the effectiveness of anomaly detection outcomes often falls short when confronted with highly deceptive in-vehicle network attacks.In this study,seven representative classification algorithms are selected to detect common in-vehicle network attacks,and a comparative analysis is employed to identify the most suitable and favorable detection method.In consideration of the communication protocol characteristics of in-vehicle networks,an optimal convolutional neural network(CNN)detection algorithm is proposed that uses data field characteristics and classifier selection,and its comprehensive performance is tested.In addition,the concept of Hamming distance between two adjacent packets within the in-vehicle network is introduced,enabling the proposal of an enhanced CNN algorithm that achieves robust detection of challenging-to-identify abnormal data.This paper also presents the proposed CNN classifica-tion algorithm that effectively addresses the issue of high false negative rate(FNR)in abnormal data detection based on the timestamp feature of data packets.The experimental results validate the efficacy of the proposed abnormal data detection algorithm,highlighting its strong detection performance and its potential to provide an effective solution for safeguarding the security of in-vehicle network information. 展开更多
关键词 Classification algorithm Anomaly detection In-vehicle network Feature extraction Injecting attack
原文传递
Adaptive security control of time-varying constraints nonlinear cyber-physical systems with false data injection attacks
7
作者 Yue-Ming Wang Yuan-Xin Li 《Journal of Control and Decision》 EI 2024年第1期50-59,共10页
In this article,an adaptive security control scheme is presented for cyber-physical systems(CPSs)suffering from false data injection(FDI)attacks and time-varying state constraints.Firstly,an adaptive bound estimation ... In this article,an adaptive security control scheme is presented for cyber-physical systems(CPSs)suffering from false data injection(FDI)attacks and time-varying state constraints.Firstly,an adaptive bound estimation mechanism is introduced in the backstepping control design to mitigate the effect of FDI attacks.Secondly,to solve the unknown sign time-varying statefeedback gains aroused by the FDI attacks,a type of Nussbaum function is employed in the adaptive security control.Then,by constructing a barrier Lyapunov function,it can be ensured that all signals of controlled system are bounded and the time-varying state constraints are not transgressed.Finally,the provided simulation examples demonstrate the effectiveness of the proposed controller. 展开更多
关键词 Neural networks backstepping technology false data injection(FDI)attacks nonlinear cyber-physical systems controls
原文传递
Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks
8
作者 Bairen Chen Q.H.Wu +1 位作者 Mengshi Li Kaishun Xiahou 《Protection and Control of Modern Power Systems》 SCIE EI 2023年第2期1-12,共12页
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure... State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN. 展开更多
关键词 Power system state estimation(PSSE) Bad data detection(BDD) False data injection attacks(FDIA) Graph edge-conditioned convolutional networks(GECCN)
原文传递
Analysis of Stealthy False Data Injection Attacks Against Networked Control Systems:Three Case Studies 被引量:1
9
作者 PANG Zhonghua FU Yuan +1 位作者 GUO Haibin SUN Jian 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第4期1407-1422,共16页
This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness an... This paper mainly investigates the security problem of a networked control system based on a Kalman filter.A false data injection attack scheme is proposed to only tamper the measurement output,and its stealthiness and effects on system performance are analyzed under three cases of system knowledge held by an attacker and a defender.Firstly,it is derived that the proposed attack scheme is stealthy for a residual-based detector when the attacker and the defender hold the same accurate system knowledge.Secondly,it is proven that the proposed attack scheme is still stealthy even if the defender actively modifies the Kalman filter gain so as to make it different from that of the attacker.Thirdly,the stealthiness condition of the proposed attack scheme based on an inaccurate model is given.Furthermore,for each case,the instability conditions of the closed-loop system under attack are derived.Finally,simulation results are provided to test the proposed attack scheme. 展开更多
关键词 False data injection attack networked control systems(NCSs) stability stealthiness
原文传递
A Privacy-preserving Algorithm for AC Microgrid Cyber-physical System Against False Data Injection Attacks 被引量:1
10
作者 Jun Yang Yu Zhang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1646-1658,共13页
A new privacy-preserving algorithm based on the Paillier cryptosystem including a new cooperative control strategy is proposed in this paper, which can resist the false data injection(FDI) attack based on the finite-t... A new privacy-preserving algorithm based on the Paillier cryptosystem including a new cooperative control strategy is proposed in this paper, which can resist the false data injection(FDI) attack based on the finite-time control theory and the data encryption strategy. Compared with the existing algorithms, the proposed privacy-preserving algorithm avoids the direct transmission of the ciphertext of frequency data in communication links while avoiding complex iterations and communications. It builds a secure data transmission environment that can ensure data security in the AC microgrid cyber-physical system(CPS). This algorithm provides effective protection for AC microgrid CPS in different cases of FDI attacks. At the same time, it can completely eliminate the adverse effects caused by the FDI attack. Finally, the effectiveness, security, and advantages of this algorithm are verified in the improved IEEE 34-node test microgrid system with six distributed generators(DGs) in different cases of FDI attacks. 展开更多
关键词 AC microgrid cyber-physical system(CPS) distributed cooperative control false data injection(FDI)attack Paillier cryptosystem
原文传递
Active resilient defense control against false data injection attacks in smart grids
11
作者 Xiaoyuan Luo Lingjie Hou +3 位作者 Xinyu Wang Ruiyang Gao Shuzheng Wang Xinping Guan 《Control Theory and Technology》 EI CSCD 2023年第4期515-529,共15页
The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defe... The emerging of false data injection attacks(FDIAs)can fool the traditional detection methods by injecting false data,which has brought huge risks to the security of smart grids.For this reason,a resilient active defense control scheme based on interval observer detection is proposed in this paper to protect smart grids.The proposed active defense highlights the integration of detection and defense against FDIAs in smart girds.First,a dynamic physical grid model under FDIAs is modeled,in which model uncertainty and parameter uncertainty are taken into account.Then,an interval observer-based detection method against FDIAs is proposed,where a detection criteria using interval residual is put forward.Corresponding to the detection results,the resilient defense controller is triggered to defense the FDIAs if the system states are affected by FDIAs.Linear matrix inequality(LMI)approach is applied to design the resilient controller with H_(∞)performance.The system with the resilient defense controller can be robust to FDIAs and the gain of the resilient controller has a certain gain margin.Our active resilient defense approach can be built in real time and show accurate and quick respond to the injected FDIAs.The effectiveness of the proposed defense scheme is verified by the simulation results on an IEEE 30-bus grid system. 展开更多
关键词 Active resilient defense Attack detection Cyber attacks Cyber-attack detection Cyber grid elements Cyber threat False data injection attack Smart grids security Interval observer
原文传递
Security control of Markovian jump neural networks with stochastic sampling subject to false data injection attacks
12
作者 Lan Yao Xia Huang +1 位作者 Zhen Wang Min Xiao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期146-154,共9页
The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to rese... The security control of Markovian jumping neural networks(MJNNs)is investigated under false data injection attacks that take place in the shared communication network.Stochastic sampleddata control is employed to research the exponential synchronization of MJNNs under false data injection attacks(FDIAs)since it can alleviate the impact of the FDIAs on the performance of the system by adjusting the sampling periods.A multi-delay error system model is established through the input-delay approach.To reduce the conservatism of the results,a sampling-periodprobability-dependent looped Lyapunov functional is constructed.In light of some less conservative integral inequalities,a synchronization criterion is derived,and an algorithm is provided that can be solved for determining the controller gain.Finally,a numerical simulation is presented to confirm the efficiency of the proposed method. 展开更多
关键词 Markovian jumping neural networks stochastic sampling looped-functional false data injection attack
原文传递
False data injection attacks against smart grid state estimation:Construction, detection and defense 被引量:6
13
作者 ZHANG Meng SHEN Chao +4 位作者 HE Ning HAN SiCong LI Qi WANG Qian GUAN XiaoHong 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2019年第12期2077-2087,共11页
As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electri... As a typical representative of the so-called cyber-physical system,smart grid reveals its high efficiency,robustness and reliability compared with conventional power grid.However,due to the deep integration of electrical components and computinginformation in cyber space,smart grid is vulnerable to malicious attacks,especially for a type of attacks named false data injection attacks(FDIAs).FDIAs are capable of tampering meter measurements and affecting the results of state estimation stealthily,which severely threat the security of smart grid.Due to the significantinfluence of FDIAs on smart grid,the research related to FDIAs has received considerable attention over the past decade.This paper aims to summarize recent advances in FDIAs against smart grid state estimation,especially from the aspects of background materials,construction methods,detection and defense strategies.Moreover,future research directions are discussed and outlined by analyzing existing results.It is expected that through the review of FDIAs,the vulnerabilities of smart grid to malicious attacks can be further revealed and more attention can be devoted to the detection and defense of cyber-physical attacks against smart grid. 展开更多
关键词 false data injection attacks(FDIAs) state estimation smart grid cyber security
原文传递
Impact analysis of false data injection attacks on power system static security assessment 被引量:3
14
作者 Jiongcong CHEN Gaoqi LIANG +4 位作者 Zexiang CAI Chunchao HU Yan XU Fengji LUO Junhua ZHAO 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2016年第3期496-505,共10页
Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations ... Static security assessment(SSA) is an important procedure to ensure the static security of the power system.Researches recently show that cyber-attacks might be a critical hazard to the secure and economic operations of the power system. In this paper, the influences of false data injection attack(FDIA) on the power system SSA are studied. FDIA is a major kind of cyber-attacks that can inject malicious data into meters, cause false state estimation results, and evade being detected by bad data detection. It is firstly shown that the SSA results could be manipulated by launching a successful FDIA, which can lead to incorrect or unnecessary corrective actions. Then,two kinds of targeted scenarios are proposed, i.e., fake secure signal attack and fake insecure signal attack. The former attack will deceive the system operator to believe that the system operates in a secure condition when it is actually not. The latter attack will deceive the system operator to make corrective actions, such as generator rescheduling, load shedding, etc. when it is unnecessary and costly. The implementation of the proposed analysis is validated with the IEEE-39 benchmark system. 展开更多
关键词 Cyber physical power system Static security assessment False data injection attacks State estimation
原文传递
Detection and Estimation of False Data Injection Attacks for Load Frequency Control Systems 被引量:1
15
作者 Jun Ye Xiang Yu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第4期861-870,共10页
False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in t... False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in the presence of external disturbances are investigated.First,the LFC system model with FDIAs against frequency and tie-line power measurements is established.Then,a design procedure for the unknown input observer(UIO)is presented and the residual signal is generated to detect the FDIAs.The UIO is designed to decouple the effect of the unknown external disturbance on the residual signal.After that,an attack estimation method based on a robust adaptive observer(RAO)is proposed to estimate the state and the FDIAs simultaneously.In order to improve the performance of attack estimation,the H¥technique is employed to minimize the effect of external disturbance on estimation errors,and the uniform boundedness of the state and attack estimation errors is proven using Lyapunov stability theory.Finally,a two-area interconnected power system is simulated to demonstrate the effectiveness of the proposed attack detection and estimation algorithms. 展开更多
关键词 External disturbance false data injection attacks load frequency control robust adaptive observer unknown input observer
原文传递
Blind false data injection attacks in smart grids subject to measurement outliers 被引量:1
16
作者 Xing-Jian Ma Huimin Wang 《Journal of Control and Decision》 EI 2022年第4期445-454,共10页
False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,whi... False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,which eliminate the limitation of grasping measurement Jacobian matrix H in advance,but when there are outliers in measurement data,attack performance is degraded.In this paper,improved BFDIAs are proposed.In off-line phase,lowdimensional measurement matrix without outliers calculated by Linear Local Tangent Space Alignment algorithm(LLTSA)is sent into Continuous Deep Belief Network(CDBN)as training data to learn their probability distribution.In on-line phase,real-time low-dimensional measurement matrix with outliers are sent into the trained model as inputs,and outputs are reconstructed by the probability distribution in off-line phase,which eliminates the influence of outliers indirectly.Simulations are implemented on PJM 5-bus and IEEE 14-bus systems to verify the performance of proposed strategy compared with PCA-based BFDIAs. 展开更多
关键词 Smart grids blind false data injection attacks measurement outliers continuous deep belief network linear local tangent space alignment algorithm
原文传递
Kinematic Control of Serial Manipulators Under False Data Injection Attack 被引量:1
17
作者 Yinyan Zhang Shuai Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期1009-1019,共11页
With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits ... With advanced communication technologies,cyberphysical systems such as networked industrial control systems can be monitored and controlled by a remote control center via communication networks.While lots of benefits can be achieved with such a configuration,it also brings the concern of cyber attacks to the industrial control systems,such as networked manipulators that are widely adopted in industrial automation.For such systems,a false data injection attack on a control-center-to-manipulator(CC-M)communication channel is undesirable,and has negative effects on the manufacture quality.In this paper,we propose a resilient remote kinematic control method for serial manipulators undergoing a false data injection attack by leveraging the kinematic model.Theoretical analysis shows that the proposed method can guarantee asymptotic convergence of the regulation error to zero in the presence of a type of false data injection attack.The efficacy of the proposed method is validated via simulations. 展开更多
关键词 Cyber-physical systems false data injection attack MANIPULATORS remote kinematic control
下载PDF
Coot Optimization with Deep Learning-Based False Data Injection Attack Recognition
18
作者 T.Satyanarayana Murthy P.Udayakumar +2 位作者 Fayadh Alenezi E.Laxmi Lydia Mohamad Khairi Ishak 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期255-271,共17页
The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation... The recent developments in smart cities pose major security issues for the Internet of Things(IoT)devices.These security issues directly result from inappropriate security management protocols and their implementation by IoT gadget developers.Cyber-attackers take advantage of such gadgets’vulnerabilities through various attacks such as injection and Distributed Denial of Service(DDoS)attacks.In this background,Intrusion Detection(ID)is the only way to identify the attacks and mitigate their damage.The recent advancements in Machine Learning(ML)and Deep Learning(DL)models are useful in effectively classifying cyber-attacks.The current research paper introduces a new Coot Optimization Algorithm with a Deep Learning-based False Data Injection Attack Recognition(COADL-FDIAR)model for the IoT environment.The presented COADL-FDIAR technique aims to identify false data injection attacks in the IoT environment.To accomplish this,the COADL-FDIAR model initially preprocesses the input data and selects the features with the help of the Chi-square test.To detect and classify false data injection attacks,the Stacked Long Short-Term Memory(SLSTM)model is exploited in this study.Finally,the COA algorithm effectively adjusts the SLTSM model’s hyperparameters effectively and accomplishes a superior recognition efficiency.The proposed COADL-FDIAR model was experimentally validated using a standard dataset,and the outcomes were scrutinized under distinct aspects.The comparative analysis results assured the superior performance of the proposed COADL-FDIAR model over other recent approaches with a maximum accuracy of 98.84%. 展开更多
关键词 False data injection attack security internet of things deep learning coot optimization algorithm
下载PDF
Optimal Hybrid Deep Learning Enabled Attack Detection and Classificationin IoT Environment
19
作者 Fahad F.Alruwaili 《Computers, Materials & Continua》 SCIE EI 2023年第4期99-115,共17页
The Internet of Things (IoT) paradigm enables end users to accessnetworking services amongst diverse kinds of electronic devices. IoT securitymechanism is a technology that concentrates on safeguarding the devicesand ... The Internet of Things (IoT) paradigm enables end users to accessnetworking services amongst diverse kinds of electronic devices. IoT securitymechanism is a technology that concentrates on safeguarding the devicesand networks connected in the IoT environment. In recent years, False DataInjection Attacks (FDIAs) have gained considerable interest in the IoT environment.Cybercriminals compromise the devices connected to the networkand inject the data. Such attacks on the IoT environment can result in a considerableloss and interrupt normal activities among the IoT network devices.The FDI attacks have been effectively overcome so far by conventional threatdetection techniques. The current research article develops a Hybrid DeepLearning to Combat Sophisticated False Data Injection Attacks detection(HDL-FDIAD) for the IoT environment. The presented HDL-FDIAD modelmajorly recognizes the presence of FDI attacks in the IoT environment.The HDL-FDIAD model exploits the Equilibrium Optimizer-based FeatureSelection (EO-FS) technique to select the optimal subset of the features.Moreover, the Long Short Term Memory with Recurrent Neural Network(LSTM-RNN) model is also utilized for the purpose of classification. At last,the Bayesian Optimization (BO) algorithm is employed as a hyperparameteroptimizer in this study. To validate the enhanced performance of the HDLFDIADmodel, a wide range of simulations was conducted, and the resultswere investigated in detail. A comparative study was conducted between theproposed model and the existing models. The outcomes revealed that theproposed HDL-FDIAD model is superior to other models. 展开更多
关键词 False data injection attacks hyperparameter optimizer deep learning feature selection IOT SECURITY
下载PDF
A Secure Hardware Implementation for Elliptic Curve Digital Signature Algorithm
20
作者 Mouna Bedoui Belgacem Bouallegue +4 位作者 Abdelmoty M.Ahmed Belgacem Hamdi Mohsen Machhout Mahmoud M.Khattab 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2177-2193,共17页
Since the end of the 1990s,cryptosystems implemented on smart cards have had to deal with two main categories of attacks:side-channel attacks and fault injection attacks.Countermeasures have been developed and validat... Since the end of the 1990s,cryptosystems implemented on smart cards have had to deal with two main categories of attacks:side-channel attacks and fault injection attacks.Countermeasures have been developed and validated against these two types of attacks,taking into account a well-defined attacker model.This work focuses on small vulnerabilities and countermeasures related to the Elliptic Curve Digital Signature Algorithm(ECDSA)algorithm.The work done in this paper focuses on protecting the ECDSA algorithm against fault-injection attacks.More precisely,we are interested in the countermeasures of scalar multiplication in the body of the elliptic curves to protect against attacks concerning only a few bits of secret may be sufficient to recover the private key.ECDSA can be implemented in different ways,in software or via dedicated hardware or a mix of both.Many different architectures are therefore possible to implement an ECDSA-based system.For this reason,this work focuses mainly on the hardware implementation of the digital signature ECDSA.In addition,the proposed ECDSA architecture with and without fault detection for the scalar multiplication have been implemented on Xilinxfield programmable gate arrays(FPGA)platform(Virtex-5).Our implementation results have been compared and discussed.Our area,frequency,area overhead and frequency degradation have been compared and it is shown that the proposed architecture of ECDSA with fault detection for the scalar multiplication allows a trade-off between the hardware overhead and the security of the ECDSA. 展开更多
关键词 Elliptic curve cryptography(ECC) Montgomery ladder fault detection method fault injection attack digital signature ECDSA FPGA
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部