Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by com...Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding.展开更多
This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of vari...This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.展开更多
Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining ...Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert sys- tem-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.展开更多
文摘Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding.
基金The authors would like to thank the research group that took part in the study for their generous cooperation. Project 50965003 supported by National Natural Science Foundation of China.
基金(Nos. 20806040,61073059 and 61034005) supported by the National Natural Science Foundation of China
文摘This paper deals with a multi-objective parameter optimization framework for energy saving in injection molding process.It combines an experimental design by Taguchi's method,a process analysis by analysis of variance(ANOVA),a process modeling algorithm by artificial neural network(ANN),and a multi-objective parameter optimization algorithm by genetic algorithm(GA)-based lexicographic method.Local and global Pareto analyses show the trade-off between product quality and energy consumption.The implementation of the proposed framework can reduce the energy consumption significantly in laboratory scale tests,and at the same time,the product quality can meet the pre-determined requirements.
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 51675199 and 51635006) and the National Program on Key Basic Research Project (Grant No. 2013CB035805).
文摘Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert sys- tem-based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.