In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain dista...In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain distance functions satisfy a reasonable condition.展开更多
We study the injectivity radius bound for 3-d Ricci flow with bounded curvature. As applications, we show the long time existence of the Ricci flow with positive Ricci curvature and with curvature decay condition at i...We study the injectivity radius bound for 3-d Ricci flow with bounded curvature. As applications, we show the long time existence of the Ricci flow with positive Ricci curvature and with curvature decay condition at infinity. We partially settle a question of Chow-Lu-Ni [Hamilton's Ricci Flow, p. 302].展开更多
In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff t...In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff topology. As an application we also prove a pinching result which states that a Ricci flat manifold is flat under certain conditions.展开更多
文摘In this paper, we study complete open manifolds with nonnegative Ricci curvature and injectivity radius bounded from below. We find that this kind of manifolds are diffeomorphic to a Euclidean space when certain distance functions satisfy a reasonable condition.
文摘We study the injectivity radius bound for 3-d Ricci flow with bounded curvature. As applications, we show the long time existence of the Ricci flow with positive Ricci curvature and with curvature decay condition at infinity. We partially settle a question of Chow-Lu-Ni [Hamilton's Ricci Flow, p. 302].
基金Supported by National Natural Science Foundation of China (19971081)
文摘In this paper we prove that tile set of Riemannian manifolds with parallel Ricci curvature, lower bounds for sectional curvature and injectivity radius and a upper bound for volume is coo compact in Gromov-Hausdroff topology. As an application we also prove a pinching result which states that a Ricci flat manifold is flat under certain conditions.