期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Development and technology status of energy storage in depleted gas reservoirs 被引量:1
1
作者 Jifang Wan Yangqing Sun +4 位作者 Yuxian He Wendong Ji Jingcui Li Liangliang Jiang Maria Jose Jurado 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第2期198-221,共24页
Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"a... Utilizing energy storage in depleted oil and gas reservoirs can improve productivity while reducing power costs and is one of the best ways to achieve synergistic development of"Carbon Peak–Carbon Neutral"and"Underground Resource Utiliza-tion".Starting from the development of Compressed Air Energy Storage(CAES)technology,the site selection of CAES in depleted gas and oil reservoirs,the evolution mechanism of reservoir dynamic sealing,and the high-flow CAES and injection technology are summarized.It focuses on analyzing the characteristics,key equipment,reservoir construction,application scenarios and cost analysis of CAES projects,and sorting out the technical key points and existing difficulties.The devel-opment trend of CAES technology is proposed,and the future development path is scrutinized to provide reference for the research of CAES projects in depleted oil and gas reservoirs. 展开更多
关键词 Depleted gas reservoirs technology and development Siting analysis Safety evaluation Compressed air energy storage
下载PDF
Microscopic experiment on efficient construction of underground gas storages converted from water-invaded gas reservoirs
2
作者 JIANG Tongwen QI Huan +4 位作者 WANG Zhengmao LI Yiqiang WANG Jinfang LIU Zheyu CAO Jinxin 《Petroleum Exploration and Development》 SCIE 2024年第1期203-212,共10页
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic... Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee. 展开更多
关键词 water-invaded gas-reservoir underground gas storage cyclical injection-production gas-water contact gas storage and production rate UGS capacity expansion control method
下载PDF
The Research about Storage and Transportation of Natural Gas Based on LNG Technology
3
作者 Shuren Yang Di Xu +2 位作者 Yue Cui Ying Ni Chao Duan 《Natural Resources》 2015年第4期306-311,共6页
Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the... Nowadays, we are in great lack of the technology theory for the storage and transportation of gas hydrate. Under this condition, after checking out related theory of these, we established the technology roadmap of the storage and transportation of gas hydrate by LNG technology. Study has shown that the technology of LNG is more saving than that of pipeline. Then we came out with the new idea of storage and transportation of hydrate by LNG technology. 展开更多
关键词 gas HYDRATE Composition of Produced gas PRETREATMENT CRAFT LNG technology of storage and Transportation
下载PDF
RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL GAS STORAGE——A REVIEW 被引量:28
4
作者 Yasuhiko H.Mori 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期1-17,共17页
Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies ne... Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes (a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc. ) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However,many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-formation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process. 展开更多
关键词 into rate or AS of that RECENT ADVANCES IN HYDRATE-BASED technologIES FOR NATURAL gas storage A REVIEW been
下载PDF
Change of phase state during multi-cycle injection and production process of condensate gas reservoir based underground gas storage 被引量:1
5
作者 TANG Yong LONG Keji +5 位作者 WANG Jieming XU Hongcheng WANG Yong HE Youwei SHI Lei ZHU Huayin 《Petroleum Exploration and Development》 CSCD 2021年第2期395-406,共12页
Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cy... Based on the differences in production mode and operation process between gas storage and gas reservoir,we established a phase balance test procedure and a theoretical simulation model of phase balance during multi-cycles of injection and production of underground gas storage(UGS)rebuilt from condensate gas reservoir to study the phase characteristics of produced and remaining fluids during multi-cycles of injection and production.Take condensate reservoir gas storage as example,the composition of produced fluid and remaining fluid,phase state of remaining fluid,retrograde condensate saturation and condensate recovery degree in the process of multi-cycles of injection-production were studied through multi-cycle injection-production experiment and phase equilibrium theory simulation.The injected gas could greatly improve the recovery of condensate oil in the gas reservoir,and the condensate oil recovery increased by 42% after 5 cycles of injection and production;the injected gas had significant evaporative and extraction effects on the condensate,especially during the first two cycles;the condensate oil saturation of the formation decreased with the increase of injection-production cycles,and the condensate oil saturation after multi-cycles of injection-production was almost 0;the storage capacity increased by about 7.5% after multi-cycles of injection and production,and the cumulative gas injection volume in the 5 th cycle increased by about 25%compared with that in the 1 st cycle. 展开更多
关键词 condensate gas reservoir gas storage phase characteristics multi-cycles of injection-production EOR
下载PDF
Simulation of pore space production law and capacity expansion mechanism of underground gas storage
6
作者 LIU Tao LI Yiqiang +7 位作者 DING Guosheng WANG Zhengmao SHI Lei LIU Zheyu TANG Xiang CAO Han CAO Jinxin HUANG Youqing 《Petroleum Exploration and Development》 CSCD 2022年第6期1423-1429,共7页
One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carrie... One-dimensional gas injection storage building and one-cycle injection-production modeling experiment,and two-dimensional flat core storage building and multi-cycle injection-production modeling experiment were carried out using one-dimensional long core and large two-dimensional flat physical models to find out the effects of reservoir physical properties and injection-production balance time on reservoir pore utilization efficiency,effective reservoir capacity formation and capacity-reaching cycle.The results show that reservoir physical properties and formation water saturation are the main factors affecting the construction and operation of gas-reservoir type underground gas storage.During the construction and operation of gas-reservoir type gas storage,the reservoir space can be divided into three types of working zones:high efficiency,low efficiency and ineffective ones.The higher the reservoir permeability,the higher the pore utilization efficiency is,the smaller the ineffective working zone is,or there is no ineffective working zone;the smaller the loss of injected gas is,and the higher the utilization rate of pores is.The better the reservoir physical properties,the larger the reservoir space and the larger the final gas storage capacity is.The higher the water saturation of the reservoir,the more the gas loss during gas storage capacity building and operation is.Optimizing injection-production regime to discharge water and reduce water saturation is an effective way to reduce gas loss in gas storage.In the process of multiple cycles of injection and production,there is a reasonable injection-production balance time,further extending the injection-production balance period after reaching the reasonable time has little contribution to the expansion of gas storage capacity. 展开更多
关键词 gas reservoir-type underground gas storage multi-cycle injection and production injection-production equilibrium time pore utilization efficiency effective gas storage volume
下载PDF
Numerical simulation-based correction of relative permeability hysteresis in water-invaded underground gas storage during multi-cycle injection and production
7
作者 ZHU Sinan SUN Junchang +4 位作者 WEI Guoqi ZHENG Dewen WANG Jieming SHI Lei LIU Xianshan 《Petroleum Exploration and Development》 CSCD 2021年第1期190-200,共11页
By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle in... By conducting relative permeability experiments of multi-cycle gas-water displacement and imbibition on natural cores,we discuss relative permeability hysteresis effect in underground gas storage during multi-cycle injection and production.A correction method for relative permeability hysteresis in numerical simulation of water-invaded gas storage has been worked out using the Carlson and Killough models.A geologic model of water-invaded sandstone gas storage with medium-low permeability is built to investigate the impacts of relative permeability hysteresis on fluid distribution and production performance during multi-cycle injection and production of the gas storage.The study shows that relative permeability hysteresis effect occurs during high-speed injection and production in gas storage converted from water-invaded gas reservoir,and leads to increase of gas-water transition zone width and thickness,shrinkage of the area of high-efficiency gas storage,and decrease of the peak value variation of pore volume containing gas,and then reduces the storage capacity,working gas volume,and high-efficiency operation span of the gas storage.Numerical simulations exhibit large prediction errors of performance indexes if this hysteresis effect is not considered.Killough and Carlson methods can be used to correct the relative permeability hysteresis effect in water-invaded underground gas storage to improve the prediction accuracy.The Killough method has better adaptability to the example model. 展开更多
关键词 water-invaded gas reservoir underground gas storage multicycle injection-production relative permeability hysteresis model-based correction index prediction
下载PDF
Design and realization of rock salt gas storage database management system based on SQL Server 被引量:1
8
作者 Yingjie Wang Jianjun Liu +1 位作者 Xiang He Bing Wang 《Petroleum》 2018年第4期466-472,共7页
Projects involving the construction of rock salt underground gas storage have several disadvantages,for example,effective management is not employed to manage the production information and data in the process of the ... Projects involving the construction of rock salt underground gas storage have several disadvantages,for example,effective management is not employed to manage the production information and data in the process of the project,resulting in duplication of data storage,waste of storage space,lower efficiency of data calling,and negative effects on the efficiency of data update.Therefore,a database and its management systems for a rock salt gas storage was constructed based on an SQL Server database system,primarily including the management forms of the geological modeling,storage simulation,stability evaluation,economic evaluation,and covering the addition and delete checks of static and dynamic data.The security of the system was improved by setting the administrator permission.The establishment of the database management system was of tremendous importance and it provided a significant technical support for the development of the gas storage project. 展开更多
关键词 Computer technology and application Database system SQL Server Rock salt gas storage
原文传递
Status and Prospect of CTL and SNG Industry
9
作者 Kong Lingfeng Zhu Xingshan Zhan Enqiang 《China Oil & Gas》 CAS 2018年第1期9-16,共8页
Since the beginning of this century, revolutionary progress has been made in the understanding of resources and in the mining technologies of the oil and gas industry. Advances in petroleum engineering technology repr... Since the beginning of this century, revolutionary progress has been made in the understanding of resources and in the mining technologies of the oil and gas industry. Advances in petroleum engineering technology represented by horizontal wells and large-scale fracturing have promoted the scale development of low-grade and unconventional oil and gas resources. After the rapid growth of natural gas production in China for more than 10 consecutive years, the replacement of conventional natural gas resources has been weak and unconventional natural gas has become the major force for increasing production. Coal based SNG(synthetic natural gas) has also become a major competitor in the domestic market. The development of CTL(coal-toliquids) and SNG industries has brought coal resources into the oil and gas product market, expanding the concept of traditional oil and gas resources. The continuous improvement of petroleum engineering technology has promoted the development of deep underground coal gasification technology, which has given economic value to the huge amount of deep coal resources that are unable to be exploited by underground mining, and provides a tremendous resource guarantee for the sustainable development of the traditional oil and gas industry. A preliminary calculation shows that deep underground coal gasification has a competitive advantage in cost compared with high-cost, low-grade, unconventional gas and coal-based natural gas. Deep underground coal gasification is a typical cross-disciplinary and cross-sectoral sophisticated technology. Domestic oil and gas enterprises have dominant advantages in the engineering technology of this field. Further technical integration innovation and multi-industry joint research are needed to eventually realize the commercial application of this deep underground coal gasification technology. 展开更多
关键词 Unconventional OIL and gas Converted OIL and gas CTL SNG Deep underground COAL gasification Conceptual INNOVATION technology integration INNOVATION COAL cavern gas storage
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部