Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in fa...Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.展开更多
Numerous laboratory experiments and field cases show that even very small amount of oil in injected water can cause severe injectivity damage. Although injectivity decline caused by oil droplets has been studied exper...Numerous laboratory experiments and field cases show that even very small amount of oil in injected water can cause severe injectivity damage. Although injectivity decline caused by oil droplets has been studied experimentally, there is still lack of an easy-to-use and widely accepted model to predict the decline behavior. In this work, we developed an analytical model to predict the time-dependent progress of the water permeability reduction in linear flow by analyzing experimental data obtained from linear core flooding. The model considers mass transfer of the oil phase from the produced water to the rock due capture effects by dispersion, advection and adsorption inside the rock. As the captured oil saturation increases, permeability reduces following the relative permeability drainage relationship. The reduction stabilizes when the oil saturation comes to an equilibrium value controlled by oil droplet size and injection velocity. The model is calibrated using published experimental data from prolonged core floods with oil- contaminated waste water. Theoretical runs of the model replicate all the effects known from experimental observations. Resulting from the model is a distributed change of permeability vs. time and distance from the point of injection that can be converted to the overall injectivity damage.展开更多
In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper ex...With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper examins sequestration parameters such as CO_(2)plume behaviour,residual gas trapping and injectivity as a means of achieving safe and successful CO_(2)storage in saline aquifers.Mineral precipitation/dissolution rates are used to establish a relationship between these parameters and geochemical reactions in saline aquifers.To achieve this,mechanistic models(6 models with different inputs,created using CMG e GEM,2016 and WINPROP,2016)are simulated using input data from literature and studying changes in fluids and formation properties as well as mineral precipitation/dissolution rates in aquifers when subjected to different conditions in the different models.The results from the models show that high CO_(2)dissolution,which creates large CO_(2)plume,leads to high mineral dissolution/precipitation as results of increased fluid-rock interactions(geochemical reactions);whereas injectivity,although enhanced by CO_(2)-water cyclic injection,does not show much increase in bottom hole pressure when mineral trapping(thus geochemical reactions)is introduced into the model.Sensitivity study on residual gas trapping shows that high residual gas saturation leads to reduced mineral precipitation/dissolution due to the reduced amount of dissolved CO_(2)in brine.Also,rapid changes in the bottom hole pressure at high residual gas saturation means that a formation that fosters high residual gas trapping,rather than CO_(2)dissolution in brine,is more likely to experience injectivity issues during the sequestration process.展开更多
The attenuation of CO_(2)injectivity has become the biggest technical barrier for the application of CO_(2)enhanced coalbed methane recovery(CO_(2)-ECBM).Commonly,the intermittent CO_(2)injection,N2 displacing CO_(2)a...The attenuation of CO_(2)injectivity has become the biggest technical barrier for the application of CO_(2)enhanced coalbed methane recovery(CO_(2)-ECBM).Commonly,the intermittent CO_(2)injection,N2 displacing CO_(2)and pre-fracturing are the potential CO_(2)enhanced injectivity methods for coal reservoirs,but their mechanism and effectiveness remain to be clarified.This paper thus conducted small-scale experiments to simulate the working process of these engineering measures by an independently developed experimental device.Results show that the CO_(2)injectivity of coal is remarkably improved by the intermittent injection mode since the CO_(2)injection time is increased by folds and the loss of reservoir pressure can be complemented in time.The N_(2)displacing CO_(2)method promotes the desorption of CO_(2)and reduces the swelling strain,with the result that the permeability of coal is improved by 74.82%and 64.95%compared with the methods of the primary subcritical CO_(2)(Sub CO_(2))and supercritical CO_(2)(Sc CO_(2))injection.However,the permeability reduces again with the secondary CO_(2)injection.The permeability of the coal sample after pre-fracturing is averagely improved by 1-2 orders of magnitude,the irreversible permeability loss rate,average stress sensitivity coefficient and the permeability loss rate due to adsorption are averagely reduced by 95.885%,61.538%and 96.297%,respectively.This indicates that the permeability of coal after pre-fracturing is no longer sensitive to both the effective stress and Sc CO_(2)adsorption,the injectivity is thus improved and stable.The CO_(2)enhanced injectivity effects of the intermittent CO_(2)injection,the N_(2)displacing CO_(2)and the pre-fracturing are various,which thus can be selected individually or jointly to improve the CO_(2)injectivity according to the reservoir physical properties and geological conditions.This research deepens the understanding of the functional mechanism of CO_(2)enhanced injectivity methods and provides some guidance for their selection and application in engineering practices.展开更多
For a commtative ring R and an injective cogenerator E in the category of R-modules, we characterize QF rings, IF rings and semihereditary rings by using the properties of the dual modules with respect to E.
BACKGROUND According to practice guidelines,endoscopic band ligation(EBL)and endoscopic tissue adhesive injection(TAI)are recommended for treating bleeding from esophagogastric varices.However,EBL and TAI are known to...BACKGROUND According to practice guidelines,endoscopic band ligation(EBL)and endoscopic tissue adhesive injection(TAI)are recommended for treating bleeding from esophagogastric varices.However,EBL and TAI are known to cause serious complications,such as hemorrhage from dislodged ligature rings caused by EBL and hemorrhage from operation-related ulcers resulting from TAI.However,the optimal therapy for mild to moderate type 1 gastric variceal hemorrhage(GOV1)has not been determined.Therefore,the aim of this study was to discover an individualized treatment for mild to moderate GOV1.AIM To compare the efficacy,safety and costs of EBL and TAI for the treatment of mild and moderate GOV1.METHODS A clinical analysis of the data retrieved from patients with mild or moderate GOV1 gastric varices who were treated under endoscopy was also conducted.Patients were allocated to an EBL group or an endoscopic TAI group.The differences in the incidence of varicose relief,operative time,operation success rate,mortality rate within 6 wk,rebleeding rate,6-wk operation-related ulcer healing rate,complication rate and average operation cost were compared between the two groups of patients.RESULTS The total effective rate of the two treatments was similar,but the efficacy of EBL(66.7%)was markedly better than that of TAI(39.2%)(P<0.05).The operation success rate in both groups was 100%,and the 6-wk mortality rate in both groups was 0%.The average operative time(26 min)in the EBL group was significantly shorter than that in the TAI group(46 min)(P<0.01).The rate of delayed postoperative rebleeding in the EBL group was significantly lower than that in the TAI group(11.8%vs 45.1%)(P<0.01).At 6 wk after the operation,the healing rate of operation-related ulcers in the EBL group was 80.4%,which was significantly greater than that in the TAI group(35.3%)(P<0.01).The incidence of postoperative complications in the two groups was similar.The average cost and other related economic factors were greater for the EBL than for the TAI(P<0.01).CONCLUSION For mild to moderate GOV1,patients with EBL had a greater one-time varix eradication rate,a greater 6-wk operation-related ulcer healing rate,a lower delayed rebleeding rate and a lower cost than patients with TAI.展开更多
BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflamm...BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f^1 : R → E. In this paper, we fir...A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f^1 : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.展开更多
Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expe...Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expenditure.Water and gas injectivity as the secondary enhanced oil recovery techniques would be preferentially considered regarding their low costs of performances rather than chemical recovery and thermal techniques.Injected gas tends to push oil through pores or cracks in the matrix block and lead them to the production well.Therefore,injection of gas may significantly increase the recovery factor in these reservoirs.In this research,different injection scenarios in a fractured carbonate reservoir in the west of Iran are being simulated by the PVT modules of Eclipse software.The purpose of this research is to analyze the possibility of gradually increasing the extent of recovery by injecting carbon dioxide,methane,and water,and different injectivity patterns are considered in this research.The selection of injectivity patterns is severely based on the highest recycling rate of gas injection on different injection scenarios,and the injectivity scenarios were being compared with the natural depletion scenario.Consequently,Co2 injection(about 60%)had the highest oil recovery factor and CH4 and TB(about 54%and 53%)injectivity scenarios had the second and third highest rate of the oil recovery factor.展开更多
Chemotherapy-induced cachexia(CIC)is a debilitating condition characterized by weight loss,muscle atrophy,and anorexia[1].While peripheral mechanisms of cachexia have been extensively studied,the involvement of the ce...Chemotherapy-induced cachexia(CIC)is a debilitating condition characterized by weight loss,muscle atrophy,and anorexia[1].While peripheral mechanisms of cachexia have been extensively studied,the involvement of the central nervous system(CNS)in CIC is often overlooked.Chemotherapeutic drugs cause stress responses and inflammation,which may impact the hypothalamus and disrupt systemic energy and neuroendocrine functions.Understanding hypothalamic roles in regulating these processes can provide insights into CIC's mechanisms and aid in developing novel therapies.展开更多
The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At presen...The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.展开更多
The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile con...The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.展开更多
Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites,increased therapeutic efficacy,and reduced adverse effects.Over the past few years,sprayable or injectable...Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites,increased therapeutic efficacy,and reduced adverse effects.Over the past few years,sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential.These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature.Inspired by their unique properties,thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine.In this review,the state-of-theart developments in thermosensitive hydrogels for precision therapy are investigated,which covers from the thermo-gelling mechanisms and main components to biomedical applications,including wound healing,anti-tumor activity,osteogenesis,and periodontal,sinonasal and ophthalmic diseases.The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.展开更多
Despite well-known limitations,mice remain useful as model animals to study tuberculosis(TB)pathogenesis,the basic immune response,the extent of lung pathology as well as efficacy of new drugs against Mycobacterium tu...Despite well-known limitations,mice remain useful as model animals to study tuberculosis(TB)pathogenesis,the basic immune response,the extent of lung pathology as well as efficacy of new drugs against Mycobacterium tuberculosis[1,2].There are four routes of tuberculosis infection in mice:aerosol generation and exposition,intravenous injection,intranasal administration,and subcutaneous administration[3].展开更多
Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling ...Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.展开更多
Dear Editor,Treating psoriatic arthritis(PsA)is always difficult.Systemic treatments can be administered either orally or through intramuscular and intra-articular injection,including conventional synthetics,biologics...Dear Editor,Treating psoriatic arthritis(PsA)is always difficult.Systemic treatments can be administered either orally or through intramuscular and intra-articular injection,including conventional synthetics,biologics and targeted synthetic disease-modifying antirheumatic drugs[1].The alternatives,topical external therapies,are not effective on joint lesions due to drug permeability issues.Drugs injected into the articular cavity are also unsuitable for small peripheral joint lesions,the most common manifestations of PsA.The limited treatment options for PsA present a challenge.展开更多
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon...We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.U2240210,52279098)the Natural Science Foundation of Jiangsu Province(Grant No.BK20200525)the Fundamental Research Funds for the Central Universities(Grant No.B230201021).We express our gratitude to PETRONAS and Shell Global Solution International B.V.for their support of this work.
文摘Foam is utilized in enhanced oil recovery and CO_(2) sequestration.Surfactant-alternating-gas(SAG)is a preferred approach for placing foam into reservoirs,due to it enhances gas injection and minimizes corrosion in facilities.Our previous studies with similar permeability cores show that during SAG injection,several banks occupy the area near the well where fluid exhibits distinct behaviour.However,underground reservoirs are heterogeneous,often layered.It is crucial to understand the effect of permeability on fluid behaviour and injectivity in a SAG process.In this work,coreflood experiments are conducted in cores with permeabilities ranging from 16 to 2300 mD.We observe the same sequence of banks in cores with different permeabilities.However,the speed at which banks propagate and their overall mobility can vary depending on permeability.At higher permeabilities,the gas-dissolution bank and the forced-imbibition bank progress more rapidly during liquid injection.The total mobilities of both banks decrease with permeability.By utilizing a bank-propagation model,we scale up our experimental findings and compare them to results obtained using the Peaceman equation.Our findings reveal that the liquid injectivity in a SAG foam process is misestimated by conventional simulators based on the Peaceman equation.The lower the formation permeability,the greater the error.
基金part of a research program, Downhole Water Sink Technology Initiative (DWSTI) ―a Joint Industry Project (JIP) at LSU
文摘Numerous laboratory experiments and field cases show that even very small amount of oil in injected water can cause severe injectivity damage. Although injectivity decline caused by oil droplets has been studied experimentally, there is still lack of an easy-to-use and widely accepted model to predict the decline behavior. In this work, we developed an analytical model to predict the time-dependent progress of the water permeability reduction in linear flow by analyzing experimental data obtained from linear core flooding. The model considers mass transfer of the oil phase from the produced water to the rock due capture effects by dispersion, advection and adsorption inside the rock. As the captured oil saturation increases, permeability reduces following the relative permeability drainage relationship. The reduction stabilizes when the oil saturation comes to an equilibrium value controlled by oil droplet size and injection velocity. The model is calibrated using published experimental data from prolonged core floods with oil- contaminated waste water. Theoretical runs of the model replicate all the effects known from experimental observations. Resulting from the model is a distributed change of permeability vs. time and distance from the point of injection that can be converted to the overall injectivity damage.
文摘In this note,some characterizations of hereditary rings using injectivity classes and projectivity classes are given.These results unify many well known results.
文摘With increasing CO_(2)concentration in the atmosphere,CO_(2)geo-aequestration has become a popular technique to counter the dangers of global warming resulting from high levels of CO_(2)in the atmosphere.This paper examins sequestration parameters such as CO_(2)plume behaviour,residual gas trapping and injectivity as a means of achieving safe and successful CO_(2)storage in saline aquifers.Mineral precipitation/dissolution rates are used to establish a relationship between these parameters and geochemical reactions in saline aquifers.To achieve this,mechanistic models(6 models with different inputs,created using CMG e GEM,2016 and WINPROP,2016)are simulated using input data from literature and studying changes in fluids and formation properties as well as mineral precipitation/dissolution rates in aquifers when subjected to different conditions in the different models.The results from the models show that high CO_(2)dissolution,which creates large CO_(2)plume,leads to high mineral dissolution/precipitation as results of increased fluid-rock interactions(geochemical reactions);whereas injectivity,although enhanced by CO_(2)-water cyclic injection,does not show much increase in bottom hole pressure when mineral trapping(thus geochemical reactions)is introduced into the model.Sensitivity study on residual gas trapping shows that high residual gas saturation leads to reduced mineral precipitation/dissolution due to the reduced amount of dissolved CO_(2)in brine.Also,rapid changes in the bottom hole pressure at high residual gas saturation means that a formation that fosters high residual gas trapping,rather than CO_(2)dissolution in brine,is more likely to experience injectivity issues during the sequestration process.
基金sponsored by the National Natural Science Foundation of China(Grant nos.41727801,41972281,51979170,11902208,U1967208 and 41330638)the National Key Research and Development Plan Project of China(2018YFB0605600)+2 种基金the Natural Science Foundation of Hebei Province(E2021210077)the Autonomous subject of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(ZZ2020-29)Science and Technology Research Project of Hebei Province Colleges and Universities(QN2021129)。
文摘The attenuation of CO_(2)injectivity has become the biggest technical barrier for the application of CO_(2)enhanced coalbed methane recovery(CO_(2)-ECBM).Commonly,the intermittent CO_(2)injection,N2 displacing CO_(2)and pre-fracturing are the potential CO_(2)enhanced injectivity methods for coal reservoirs,but their mechanism and effectiveness remain to be clarified.This paper thus conducted small-scale experiments to simulate the working process of these engineering measures by an independently developed experimental device.Results show that the CO_(2)injectivity of coal is remarkably improved by the intermittent injection mode since the CO_(2)injection time is increased by folds and the loss of reservoir pressure can be complemented in time.The N_(2)displacing CO_(2)method promotes the desorption of CO_(2)and reduces the swelling strain,with the result that the permeability of coal is improved by 74.82%and 64.95%compared with the methods of the primary subcritical CO_(2)(Sub CO_(2))and supercritical CO_(2)(Sc CO_(2))injection.However,the permeability reduces again with the secondary CO_(2)injection.The permeability of the coal sample after pre-fracturing is averagely improved by 1-2 orders of magnitude,the irreversible permeability loss rate,average stress sensitivity coefficient and the permeability loss rate due to adsorption are averagely reduced by 95.885%,61.538%and 96.297%,respectively.This indicates that the permeability of coal after pre-fracturing is no longer sensitive to both the effective stress and Sc CO_(2)adsorption,the injectivity is thus improved and stable.The CO_(2)enhanced injectivity effects of the intermittent CO_(2)injection,the N_(2)displacing CO_(2)and the pre-fracturing are various,which thus can be selected individually or jointly to improve the CO_(2)injectivity according to the reservoir physical properties and geological conditions.This research deepens the understanding of the functional mechanism of CO_(2)enhanced injectivity methods and provides some guidance for their selection and application in engineering practices.
基金Supported by National Natural Science Foundation of China (10001017)Scientific Research Foundation for Returned Overseas Chi
文摘For a commtative ring R and an injective cogenerator E in the category of R-modules, we characterize QF rings, IF rings and semihereditary rings by using the properties of the dual modules with respect to E.
基金Supported by the Guizhou Provincial Science and Technology Program,No.[2020]4Y004.
文摘BACKGROUND According to practice guidelines,endoscopic band ligation(EBL)and endoscopic tissue adhesive injection(TAI)are recommended for treating bleeding from esophagogastric varices.However,EBL and TAI are known to cause serious complications,such as hemorrhage from dislodged ligature rings caused by EBL and hemorrhage from operation-related ulcers resulting from TAI.However,the optimal therapy for mild to moderate type 1 gastric variceal hemorrhage(GOV1)has not been determined.Therefore,the aim of this study was to discover an individualized treatment for mild to moderate GOV1.AIM To compare the efficacy,safety and costs of EBL and TAI for the treatment of mild and moderate GOV1.METHODS A clinical analysis of the data retrieved from patients with mild or moderate GOV1 gastric varices who were treated under endoscopy was also conducted.Patients were allocated to an EBL group or an endoscopic TAI group.The differences in the incidence of varicose relief,operative time,operation success rate,mortality rate within 6 wk,rebleeding rate,6-wk operation-related ulcer healing rate,complication rate and average operation cost were compared between the two groups of patients.RESULTS The total effective rate of the two treatments was similar,but the efficacy of EBL(66.7%)was markedly better than that of TAI(39.2%)(P<0.05).The operation success rate in both groups was 100%,and the 6-wk mortality rate in both groups was 0%.The average operative time(26 min)in the EBL group was significantly shorter than that in the TAI group(46 min)(P<0.01).The rate of delayed postoperative rebleeding in the EBL group was significantly lower than that in the TAI group(11.8%vs 45.1%)(P<0.01).At 6 wk after the operation,the healing rate of operation-related ulcers in the EBL group was 80.4%,which was significantly greater than that in the TAI group(35.3%)(P<0.01).The incidence of postoperative complications in the two groups was similar.The average cost and other related economic factors were greater for the EBL than for the TAI(P<0.01).CONCLUSION For mild to moderate GOV1,patients with EBL had a greater one-time varix eradication rate,a greater 6-wk operation-related ulcer healing rate,a lower delayed rebleeding rate and a lower cost than patients with TAI.
基金Project of the National Natural Science Foundation of China,No.82172398Key Research Project of the Department of Education of Liaoning Province,No.LJKZZ20220148+1 种基金Dalian Medical Science Research Project,No.2111038Dalian Dengfeng Plan Medical Key Specialty Construction Project(2021),No.243.
文摘BACKGROUND Knee osteoarthritis(KOA)is a common orthopedic condition with an uncertain etiology,possibly involving genetics and biomechanics.Factors like changes in chondrocyte microenvironment,oxidative stress,inflammation,and immune responses affect KOA development.Early-stage treatment options primarily target symptom relief.Mesenchymal stem cells(MSCs)show promise for treatment,despite challenges.Recent research highlights microRNAs(miRNAs)within MSC-released extracellular vesicles that can potentially promote cartilage regeneration and hinder KOA progression.This suggests exosomes(Exos)as a promising avenue for future treatment.While these findings emphasize the need for effective KOA progression management,further safety and efficacy validation for Exos is essential.AIM To explore miR-29a’s role in KOA,we’ll create miR-29a-loaded vesicles,testing for early treatment in rat models.METHODS Extraction of bone marrow MSC-derived extracellular vesicles,preparation of engineered vesicles loaded with miR-29a using ultrasonication,and identification using quantitative reverse transcription polymerase chain reaction;after establi-shing a rat model of KOA,rats were randomly divided into three groups:Blank control group injected with saline,normal extracellular vesicle group injected with normal extracellular vesicle suspension,and engineered extrace-llular vesicle group injected with engineered extracellular vesicle suspension.The three groups evaluation,histological detection,and immunohistochemical detection to compare and evaluate the progress of various forms of arthritis.RESULTS General behavioral observation results showed that the extracellular vesicle group and engineered extracellular vesicle group had better performance in all four indicators of pain,gait,joint mobility,and swelling compared to the blank control group.Additionally,the engineered extracellular vesicle group had better pain relief at 4 wk and better knee joint mobility at 8 wk compared to the normal extracellular vesicle group.Imaging examination results showed that the blank control group had the fastest progression of arthritis,the normal extracellular vesicle group had a relatively slower progression,and the engineered extracellular vesicle group had the slowest progression.Gross histological observation results showed that the blank control group had the most obvious signs of arthritis,the normal extracellular vesicle group showed signs of arthritis,and the engineered extracellular vesicle group showed no significant signs of arthritis.Using the Pelletier gross score evaluation,the engineered extracellular vesicle group had the slowest progression of arthritis.Results from two types of staining showed that the articular cartilage of rats in the normal extracellular vesicle and engineered extracellular vesicle groups was significantly better than that of the blank control group,and the engineered extracellular vesicle group had the best cartilage cell and joint surface condition.Immunohistochemical detection of type II collagen and proteoglycan showed that the extracellular matrix of cartilage cells in the normal extracellular vesicle and engineered extracellular vesicle groups was better than that of the blank control group.Compared to the normal extracellular vesicle group,the engineered extracellular vesicle group had a better regulatory effect on the extracellular matrix of cartilage cells.CONCLUSION Engineered Exos loaded with miR-29a can exert anti-inflammatory effects and maintain extracellular matrix stability,thereby protecting articular cartilage,and slowing the progression of KOA.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
基金the Natural Science Foundation of Education Department of Sichuan Province.and the Youth Science Foundation of Sichuan Province
文摘A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f^1 : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.
文摘Regarding the enormous demands of numerous industries to fossil fuels,it is essential to select the proper enhanced oil recovery approaches for vertical and horizontal wells to supply the demands with the optimum expenditure.Water and gas injectivity as the secondary enhanced oil recovery techniques would be preferentially considered regarding their low costs of performances rather than chemical recovery and thermal techniques.Injected gas tends to push oil through pores or cracks in the matrix block and lead them to the production well.Therefore,injection of gas may significantly increase the recovery factor in these reservoirs.In this research,different injection scenarios in a fractured carbonate reservoir in the west of Iran are being simulated by the PVT modules of Eclipse software.The purpose of this research is to analyze the possibility of gradually increasing the extent of recovery by injecting carbon dioxide,methane,and water,and different injectivity patterns are considered in this research.The selection of injectivity patterns is severely based on the highest recycling rate of gas injection on different injection scenarios,and the injectivity scenarios were being compared with the natural depletion scenario.Consequently,Co2 injection(about 60%)had the highest oil recovery factor and CH4 and TB(about 54%and 53%)injectivity scenarios had the second and third highest rate of the oil recovery factor.
基金the National Key Research and Development Program of China(Grant No.:2022YFC3501700)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.:2020B1111110001)the Youth Program of the National Natural Science Foundation of China(Grant No.:82003939).
文摘Chemotherapy-induced cachexia(CIC)is a debilitating condition characterized by weight loss,muscle atrophy,and anorexia[1].While peripheral mechanisms of cachexia have been extensively studied,the involvement of the central nervous system(CNS)in CIC is often overlooked.Chemotherapeutic drugs cause stress responses and inflammation,which may impact the hypothalamus and disrupt systemic energy and neuroendocrine functions.Understanding hypothalamic roles in regulating these processes can provide insights into CIC's mechanisms and aid in developing novel therapies.
文摘The Triassic massive sandstone reservoir in the Tahe oilfield has a strong bottom-water drive and is characterized by great burial depth,high temperature and salinity,a thin pay zone,and strong heterogeneity.At present,the water-cut is high in each block within the reservoir;some wells are at an ultrahigh water-cut stage.A lack of effective measures to control water-cut rise and stabilize oil production have necessitated the application of enhanced oil recovery(EOR)technology.This paper investigates the development and technological advances for oil reservoirs with strong edge/bottom-water drive globally,and compares their application to reservoirs with characteristics similar to the Tahe oilfield.Among the technological advances,gas injection from the top and along the direction of structural dip has been used to optimize the flow field in a typical bottom-water drive reservoir.Bottom-water coning is restrained by gas injection-assisted water control.In addition,increasing the lateral driving pressure differential improves the plane sweep efficiency which enhances oil recovery in turn.Gas injection technology in combination with technological measures like channeling prevention and blocking,and water plugging and profile control,can achieve better results in reservoir development.Gas flooding tests in the Tahe oilfield are of great significance to identifying which EOR technology is the most effective and has the potential of large-scale application for improving development of deep reservoirs with a strong bottomwater drive.
基金the National Key R&D Program of China(No.2022YFE0208100)the National Natural Science Foundation of China(No.5274316)+1 种基金the Key Research and Development Plan of Anhui Province,China(No.202210700037)the Major Science and Technology Project of Xinjiang Uygur Autonomous Region,China(No.2022A01003).
文摘The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel.The results showed that after upgrading,the volatile content of biochar ranged from 16.19%to 45.35%,and the alkali metal content,ash content,and specific surface area were significantly reduced.The optimal route for biochar pro-duction is hydrothermal carbonization-pyrolysis(P-HC),resulting in biochar with a higher calorific value,C=C structure,and increased graphitization degree.The apparent activation energy(E)of the sample ranges from 199.1 to 324.8 kJ/mol,with P-HC having an E of 277.8 kJ/mol,lower than that of raw biomass,primary biochar,and anthracite.This makes P-HC more suitable for blast furnace injection fuel.Additionally,the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits.P-HC of-fers the highest potential for carbon emission reduction,capable of reducing emissions by 96.04 kg/t when replacing 40wt%coal injec-tion.
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金financially supported by the National Natural Science Foundation of China(Grants 52172276)fund from Anhui Provincial Institute of Translational Medicine(2021zhyx-B15)。
文摘Precision therapy has become the preferred choice attributed to the optimal drug concentration in target sites,increased therapeutic efficacy,and reduced adverse effects.Over the past few years,sprayable or injectable thermosensitive hydrogels have exhibited high therapeutic potential.These can be applied as cell-growing scaffolds or drug-releasing reservoirs by simply mixing in a free-flowing sol phase at room temperature.Inspired by their unique properties,thermosensitive hydrogels have been widely applied as drug delivery and treatment platforms for precision medicine.In this review,the state-of-theart developments in thermosensitive hydrogels for precision therapy are investigated,which covers from the thermo-gelling mechanisms and main components to biomedical applications,including wound healing,anti-tumor activity,osteogenesis,and periodontal,sinonasal and ophthalmic diseases.The most promising applications and trends of thermosensitive hydrogels for precision therapy are also discussed in light of their unique features.
文摘Despite well-known limitations,mice remain useful as model animals to study tuberculosis(TB)pathogenesis,the basic immune response,the extent of lung pathology as well as efficacy of new drugs against Mycobacterium tuberculosis[1,2].There are four routes of tuberculosis infection in mice:aerosol generation and exposition,intravenous injection,intranasal administration,and subcutaneous administration[3].
基金supported by the National Natural Science Foundation of China (Grant Nos.12205196 and 12275040)the National Key Research and Development Program of China (Grant No.2022YFE03090003)。
文摘Pellet injection is a primary method for fueling the plasma in magnetic confinement devices.For that goal the knowledges of pellet ablation and deposition profiles are critical.In the present study,the pellet fueling code HPI2 was used to predict the ablation and deposition profiles of deuterium pellets injected into a typical H-mode discharge on the EAST tokamak.Pellet ablation and deposition profiles were evaluated for various pellet injection locations,with the aim at optimizing the pellet injection to obtain a deep fueling depth.In this study,we investigate the effect of the injection angle on the deposition depth of the pellet at different velocities and sizes.The ablation and deposition of the injected pellet are mainly studied at each injection position for three different injection angles:0°,45°,and 60°.The pellet injection on the high field side(HFS)can achieve a more ideal deposition depth than on the low field side(LFS).Among these angles,horizontal injection on the middle plane is relatively better on either the HFS or the LFS.When the injection location is 0.468 m below the middle plane on the HFS or 0.40 m above the middle plane of the LFS,it can achieve a similar deposition depth to the one of its corresponding side.When the pre-cooling effect is taken into account,the deposition depth is predicted to increase only slightly when the pellet is launched from the HFS.The findings of this study will serve as a reference for the update of pellet injection systems for the EAST tokamak.
基金supported by the National Natural Science Foundation of China(Grant No.82073439).
文摘Dear Editor,Treating psoriatic arthritis(PsA)is always difficult.Systemic treatments can be administered either orally or through intramuscular and intra-articular injection,including conventional synthetics,biologics and targeted synthetic disease-modifying antirheumatic drugs[1].The alternatives,topical external therapies,are not effective on joint lesions due to drug permeability issues.Drugs injected into the articular cavity are also unsuitable for small peripheral joint lesions,the most common manifestations of PsA.The limited treatment options for PsA present a challenge.
基金LMP acknowledges financial support from ANID through Convocatoria Nacional Subvención a Instalación en la Academia Convocatoria Año 2021,Grant SA77210040。
文摘We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable.