期刊文献+
共找到141篇文章
< 1 2 8 >
每页显示 20 50 100
Implications of regional identity for neural stem and progenitor cell transplantation in the injured or diseased nervous system
1
作者 Prakruthi Amar Kumar Jennifer N.Dulin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期715-716,共2页
Neural stem and progenitor cell(NSPC)transpla ntation has emerged as a promising therapeutic strategy for replacing lost neuronal populations and repairing damaged neural circuits following nervous system injury and d... Neural stem and progenitor cell(NSPC)transpla ntation has emerged as a promising therapeutic strategy for replacing lost neuronal populations and repairing damaged neural circuits following nervous system injury and disease.A great deal of experimental work has investigated the biology of NSPC grafting in preclinical animal models;more recently. 展开更多
关键词 NEURAL SYSTEM injureD
下载PDF
Clinical efficacy and safety of kyphoplasty for the treatment of osteoporotic vertebral compression fractures at different surgical timings based on the theory of“dynamic-static integration”
2
作者 Zunwang Li Jiang Chen +3 位作者 Dekui Li Jiayu Yang Jiaqi Qin Yuqing Guan 《Journal of Traditional Chinese Medical Sciences》 CAS 2024年第1期86-92,共7页
Objective:To investigate the clinical efficacy and safety of percutaneous kyphoplasty at different surgical timings in the treatment of osteoporotic vertebral compression fracture(OVCF)based on the theory of“dynamic-... Objective:To investigate the clinical efficacy and safety of percutaneous kyphoplasty at different surgical timings in the treatment of osteoporotic vertebral compression fracture(OVCF)based on the theory of“dynamic-static integration”.Methods:Patients with OVCF who underwent percutaneous kyphoplasty in our hospital were selected and divided into Groups A,B,and C for those undergoing surgery within 7,7—21,and>21 days of fracture occurrence.The variations in the amount of bone cement injected,pre-and post-operative pain levels,functional activity,deformity correction of the injured vertebrae,bone cement leakage,and vertebral body height loss were compared among the three groups.Results:Regarding pain relief and functional activity,the postoperative Visual Analog Scale and Oswestry Disability Index scores of the three groups significantly improved.Furthermore,the deformities of the injured vertebrae in the three groups were significantly corrected,with Groups A and B exhibiting superior correction compared to Group C.Moreover,the bone cement leakage rates in groups A and C were higher than that in Group B.At the 3-month follow-up,the loss of vertebral height in Group C was significantly higher than those in groups A and B.Conclusion:Kyphoplasty is effective for OVCF treatment.Early surgery can effectively restore the vertebral height of the injured vertebra,reduce kyphosis,and reduce height loss of the injured vertebra after surgery;nevertheless,treatment within 1—3 weeks of the fracture can reduce the occurrence of bone cement leakage,making the surgery safer.Therefore,surgical treatment within 1—3 weeks of fracture is safer and can achieve satisfactory therapeutic effects.From the perspective of traditional Chinese medicine,PKP surgery can transform the fracture end from a micromotion state to a fixed state,which fully embodies the theory of“dynamic-static integration”. 展开更多
关键词 KYPHOPLASTY Operation timing Bone cement leakage Lost height of injured vertebra
下载PDF
How Dangerous!
3
作者 魏子博 陈传光(指导) 《中学生英语》 2024年第2期7-7,共1页
This morning I came across something dangerous on my way to school,which nearly injured me or even made me lose my life.
关键词 SOMETHING injureD DANGEROUS
下载PDF
Bridging the injured spinal cord with neural stem cells 被引量:5
4
作者 Jennifer N. Dulin Paul Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第3期229-231,共3页
Spinal cord injury (SCI) damages not only the gray matter neurons, but also the white matter axonal tracts that carry signals to and from the brain, re- suiting in permanent loss of function below injury. Neural ste... Spinal cord injury (SCI) damages not only the gray matter neurons, but also the white matter axonal tracts that carry signals to and from the brain, re- suiting in permanent loss of function below injury. Neural stem cells (NSCs) have high therapeutic potential for reconstruction of the injured spinal cord since they can potentially fnrm neuronal relays to bridge functional con-nectivity between separated spinal cord segments. This requires host axonal regeneration into and connectivity with donor neurons, and axonal growth and connectivity of donor neurons to host central nervous system (CNS) circuitry. In this mini-review, we will discuss key studies that explore novel neuronal relay formation by grafting NSCs in models of SCI, with emphasis on long-distance axonal growth and connectivity of NSCs grafted into in-jured spinal cord. 展开更多
关键词 NSCS CELL Bridging the injured spinal cord with neural stem cells STEM
下载PDF
Beneficial effects of BV2 cell on proliferation and neuron-differentiating of mesenchymal stem cells in the circumstance of injured PC12 cell supernatant 被引量:3
5
作者 Xiao-Guang LUO Hong WANG Jin ZHOU Rong YAN Zhe WU Chao-Dong ZHANG Qiu-Shuang WANG 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第4期221-226,共6页
Objective The microglias is the representative of immune cells in the brain. It plays dual roles of both repairing and damaging in injured nervous system, and works as an inevitable component of the circumstance of in... Objective The microglias is the representative of immune cells in the brain. It plays dual roles of both repairing and damaging in injured nervous system, and works as an inevitable component of the circumstance of injured neurons. This study was aiming at the effects of the microglias on the biological activities of mesenchymal stem cells (MSCs) in the circumstance of injured neurons. Methods MSCs were obtained by primary culture. We adopted PC12 cells (PC12) and BV2 cells (BV2) to substitute for neurons and microglias, respectively. PC12 were injured by aged Aβ1-40 and the supernatant of the injured PC12 was used to set up the circumstance of injured neurons. Transwells were used for co-culture of BV2 and MSCs, which allowed the independent detection of cells after co-culture. Immunofluorescence was used to identify MSCs and neuron-differentiating cells with CD44 and neuron specific enolase (NSE) staining, respectively. MTT assay was adopted to measure the proliferation. Results In the circumstance of both BV2 presence and injured PC 12 supernatant incubation, either the proliferation or the differentiation of MSCs reached the highest, which seemed to be contradictory, but we gave our explanations. With the BV2 co-culture, the proliferation of MSCs tend to be higher, but the neuron-differentiating MSCs were similar to those incubated without BV2 co-culture either in normal or injured in PC12 supernatant. With the incubation of injured PC12 supernatant, the neuron-differentiating cells were significantly higher than that of control (P 〈 0.05). Conclusion In the circumstance of injured neurons, microlgias tend to promote the MSCs proliferation. Although not helpful in neuron-differentiating, microglias did not exert any negative effect either. 展开更多
关键词 microglias mesenchymal stem cells injured neurons PROLIFERATION differentiation
下载PDF
Transplanting neural progenitors to build a neuronal relay across the injured spinal cord 被引量:3
6
作者 Christopher Haas Itzhak Fischer 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第12期1173-1176,共4页
Cellular transplantation for repair of spinal cord injury is a prom- ising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as ... Cellular transplantation for repair of spinal cord injury is a prom- ising therapeutic strategy that includes the use of a variety of neural and non-neural cells isolated or derived from embryonic and adult tissue as well as embryonic stem cells and induced plu- ripotent stem cells. In particular, transplants of neural progenitor cells (NPCs) have been shown to limit secondary injury and scar formation and create a permissive environment in the injured spinal cord through the provision of neurotrophic molecules and growth supporting matrices that promote growth of injured host axons. Importantly, transplants of NPC are unique in their poten- tial to replace lost neural cells - including neurons, astrocytes, 展开更多
关键词 Transplanting neural progenitors to build a neuronal relay across the injured spinal cord CSPG NPC GRP
下载PDF
Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords 被引量:3
7
作者 George D.Bittner Kiran K.Rokkappanavar Jean D.Peduzzi 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1406-1408,共3页
Conventional vs. polyethylene glycol (PEG)-fusion tech- nologies to repair severed spinal axons: Most spinal cord injuries (SCIs) involve cutor crush-severance of spinal tract axons in the central nervous system ... Conventional vs. polyethylene glycol (PEG)-fusion tech- nologies to repair severed spinal axons: Most spinal cord injuries (SCIs) involve cutor crush-severance of spinal tract axons in the central nervous system (CNS). Clinical out- comes after CNS axonal severance is very poor because proximal segments of CNS axons lack a suitable environment for outgrowth (Kakulas, 1999; Fitch and Silver, 2008; Rowland et al., 2008; Kwon et al., 2010) and therefore do not naturally regenerate (Ramon y Caial, 1928). Current strategies to try to increase behavioral recovery after SCI are focused on en- hancing the environment for axonal outgrowth. 展开更多
关键词 PEG Application and implications of polyethylene glycol-fusion as a novel technology to repair injured spinal cords
下载PDF
Brain injury in combination with tacrolimus promotes the regeneration of injured peripheral nerves 被引量:5
8
作者 Xin-ze He Jian-jun Ma +6 位作者 Hao-qi Wang Tie-min Hu Bo Sun Yun-feng Gao Shi-bo Liu Wei Wang Pei Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第6期987-994,共8页
Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was(or was not) induced.... Both brain injury and tacrolimus have been reported to promote the regeneration of injured peripheral nerves. In this study, before transection of rat sciatic nerve, moderate brain contusion was(or was not) induced. After sciatic nerve injury, tacrolimus, an immunosuppressant, was(or was not) intraperitoneally administered. At 4, 8 and 12 weeks after surgery, Masson's trichrome, hematoxylin-eosin, and toluidine blue staining results revealed that brain injury or tacrolimus alone or their combination alleviated gastrocnemius muscle atrophy and sciatic nerve fiber impairment on the experimental side, simultaneously improved sciatic nerve function, and increased gastrocnemius muscle wet weight on the experimental side. At 8 and 12 weeks after surgery, brain injury induction and/or tacrolimus treatment increased action potential amplitude in the sciatic nerve trunk. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive neurons in the anterior horn of the spinal cord was greatly increased. Brain injury in combination with tacrolimus exhibited better effects on repair of injured peripheral nerves than brain injury or tacrolimus alone. This result suggests that brain injury in combination with tacrolimus promotes repair of peripheral nerve injury. 展开更多
关键词 tacrolimus injured nerves regeneration alone axonal hematoxylin peroxidase tracing Schwann
下载PDF
Physical interactions between activated microglia and injured axons:do all contacts lead to phagocytosis? 被引量:2
9
作者 Audrey D.Lafrenaye 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期538-540,共3页
Axonal injury is a pathological hallmark of both head injury and inflammatory-mediated neurological disorders,including multiple sclerosis(Schirmer et al.,2013).Such axonal disruptions and/or disconnections typicall... Axonal injury is a pathological hallmark of both head injury and inflammatory-mediated neurological disorders,including multiple sclerosis(Schirmer et al.,2013).Such axonal disruptions and/or disconnections typically result in proximal axonal segments that remain in continuity with the neuronal somawhile losing contact with their distal targets. 展开更多
关键词 Physical interactions between activated microglia and injured axons FIGURE
下载PDF
Recovery of multiply injured ascending reticular activating systems in a stroke patient 被引量:2
10
作者 sung ho jang han do lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第4期671-672,共2页
Consciousness is controlled by ular activating system (ARAS). lower and upper parts between activation of the ascending retic- The ARAS consists mainly of the the thalamus and cerebral cortex (Edlow et al., 2012; Y... Consciousness is controlled by ular activating system (ARAS). lower and upper parts between activation of the ascending retic- The ARAS consists mainly of the the thalamus and cerebral cortex (Edlow et al., 2012; Yeo et al., 2013; Jang et al., 2014). Because the ARAS is composed of several neuronal circuits connecting the brainstem to the cortex. These neuronal connections begin from the reticular formation (RF) of the brainstem and the intralaminar nucleus of thalamus to the cerebral cortex (Gosseroes et al., 2011). In addition, the ARAS system also includes several brainstem nuclei (such as dorsal raphe, locus coeruleus, pedun-culopontine nucleus, median raphe and parabrachial nucleus), non-specific thalamic nuclei, hypothalamus, and basal forebrain (Fuller et al., 2011). 展开更多
关键词 ARAS Recovery of multiply injured ascending reticular activating systems in a stroke patient
下载PDF
Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs 被引量:4
11
作者 Sujeong Jang Hyong-Ho Cho +4 位作者 Song-Hee Kim Kyung-Hwa Lee Yong-Bum Cho Jong-Seong Park Han-Seong Jeong 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第6期994-1000,共7页
Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be a... Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells(ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs(NI-h ADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-h ADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-h ADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-h ADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 d B of clicks or pure tone burst. These findings suggest that a large amount of NI-h ADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs. 展开更多
关键词 guinea ganglion repair hearing adipose injured brainstem auditory neuronal cochlear
下载PDF
Unusual neural connection between injured cingulum and brainstem in a patient with subarachnoid hemorrhage 被引量:3
12
作者 Jeong Pyo Seo Sung Ho Jang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第5期498-499,共2页
The human brain is known to have six cholinergic nudei (Selden et al., 1998; Nieuwenhuys et al., 2008). The cerebral cortex obtains cholinergic innervation mainly from the basalis nucleus of Meynert (Ch 4) in the ... The human brain is known to have six cholinergic nudei (Selden et al., 1998; Nieuwenhuys et al., 2008). The cerebral cortex obtains cholinergic innervation mainly from the basalis nucleus of Meynert (Ch 4) in the bas- al forebrain through the medial and lateral cholinergic pathways (Selden et al., 1998; Mesulam et al., 1983). The cingulum, the neural fiber bundle connecting the basal forebrain and the medial temporal lobe, contains the medial cholinergic pathway (Selden et al., 1998; Hong and Jang, 2010). 展开更多
关键词 Unusual neural connection between injured cingulum and brainstem in a patient with subarachnoid hemorrhage
下载PDF
Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal cord 被引量:1
13
作者 Dan C.Li Qun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1613-1615,共3页
Background and early studies: Endogenous tri-potential neural stem cells (NSCs) exist in the adult mammalian central nervous system (CNS). In the spinal cord, NSCs distribute throughout the entire cord, but exist... Background and early studies: Endogenous tri-potential neural stem cells (NSCs) exist in the adult mammalian central nervous system (CNS). In the spinal cord, NSCs distribute throughout the entire cord, but exist predominately in white matter tracts. The phenotypic fate of these cells in white matter is glial, largely oligodendrocyte, but not neuronal. 展开更多
关键词 OPC CNS Electrical stimulation of cortical neurons promotes oligodendrocyte development and remyelination in the injured spinal cord
下载PDF
Bridging large gaps in the injured spinal cord: mechanical and biochemical tissue adaptation 被引量:1
14
作者 Veronica Estrada Hans Werner Müller 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1572-1574,共3页
Incidence and consequences of spinal cord injuries: World- wide, every year 250,000-500,000 people suffer from spinal cord injury (SCI; www.who.int, 2013). Traumatic lesions of the spinal cord lead to primary and s... Incidence and consequences of spinal cord injuries: World- wide, every year 250,000-500,000 people suffer from spinal cord injury (SCI; www.who.int, 2013). Traumatic lesions of the spinal cord lead to primary and secondary injury mechanisms, which result in axon damage, loss of signal conduction, demyelination of axons and long-lasting deficits in motor and sensory func- tion. The extent of the damage and the subsequent functional loss depend on the spinal level and the severity of the primary injury. Furthermore, pathophysiological and pathomorpholog- ical responses in acute and chronic SCI share similar but also different requirements for treatment. 展开更多
关键词 Bridging large gaps in the injured spinal cord SCI
下载PDF
Recovery of an injured corticospinal tract by subcortical peri-lesional reorganization in a patient with intracerebral hemorrhage 被引量:2
15
作者 Sung Ho Jang Woo Hyuk Jang 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第7期1191-1192,共2页
The corticospinal tract (CST) is a neural tract responsible for motor function in the human brain. It is mainly related to hand movements (Iang, 2014). Therefore, recovery of an injured CST contributes to good rec... The corticospinal tract (CST) is a neural tract responsible for motor function in the human brain. It is mainly related to hand movements (Iang, 2014). Therefore, recovery of an injured CST contributes to good recovery in stroke patients and a thorough knowledge of the recovery mechanism regarding an injured CST is required for successful brain rehabilitation. 展开更多
关键词 reorganization subcortical intracerebral injured radiata cortex rehabilitation ganglia corona ventricle
下载PDF
Recovery of injured cingulum in a patient with traumatic brain injury 被引量:1
16
作者 Sung Ho Jang Seong Ho Kim Hyeok Gyu Kwon 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第2期323-324,共2页
The cingulum is the neural fiber bundle that connects the basal forebrain and medial temporal lobe. The cingulum contains the medial cholinergic pathway, which originates from the basalis nucleus of Meynert in the bas... The cingulum is the neural fiber bundle that connects the basal forebrain and medial temporal lobe. The cingulum contains the medial cholinergic pathway, which originates from the basalis nucleus of Meynert in the basal forebrain. Therefore, it is important for memory function (Malykhin et al., 2008; Hong and Jang, 2010). In the past, identification of the cingulum on conventional brain MRI has been impossible because it cannot discern the cingulum from other adjacent structures. Diffusion tensor tractography (DTT), derived from diffusion tensor imaging (DTI), allows three-dimensional visualization and estimation of the cingulum (Malykhin et al., 2008). 展开更多
关键词 TBI Recovery of injured cingulum in a patient with traumatic brain injury
下载PDF
Recovery of an injured corticospinal tract during the early stage of rehabilitation following pontine infarction 被引量:1
17
作者 Sung Ho Jang Hyeok Gyu Kwon 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第3期519-520,共2页
Motor weakness is a common and important sequela of stroke,and motor recovery is mostly achieved within 3 months following stroke(Jorgensen et al.,1995;Fujii and Nakada,2003),suggesting the importance of active reha... Motor weakness is a common and important sequela of stroke,and motor recovery is mostly achieved within 3 months following stroke(Jorgensen et al.,1995;Fujii and Nakada,2003),suggesting the importance of active rehabilitation during the early stage of stroke.Many studies have reported on neurological recovery during this period,however,little is known about pontine infarction(Jang et al.,2007;Kwon and Jang,2012;Kwon 展开更多
关键词 rehabilitation injured weakness neurological mostly infarct transcranial stimulation hemisphere minutes
下载PDF
Restoration of an injured lower dorsal ascending reticular activating system in a patient with intraventricular hemorrhage 被引量:1
18
作者 Sung Ho Jang Sang Seok Yeo 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第11期2022-2024,共3页
The ascending reticular activating system(ARAS)plays a key role in the control of arousal and awareness for consciousness(Paus,2000;Zeman,2001;Van der Werf et al.,2002;Weiss et al.,2007;Siposan and Aliu,2014).It i... The ascending reticular activating system(ARAS)plays a key role in the control of arousal and awareness for consciousness(Paus,2000;Zeman,2001;Van der Werf et al.,2002;Weiss et al.,2007;Siposan and Aliu,2014).It is well known that the ARAS originates from the reticular formation(RF)of the brainstem,and connects to the cerebral cortex via intralaminar to the cerebral cortex (Paus, 2000; Zeman, 2001; Van der Werf et al., 2002; Yeo et al., 2013; Jang and Kwon, 2015). The hypothalamus is involved in the regulation of sleep and awareness which is associated with the main timekeeper of consciousness (Lin, 2000; Lin et al., 2011). 展开更多
关键词 Restoration of an injured lower dorsal ascending reticular activating system in a patient with intraventricular hemorrhage
下载PDF
Improvement of ataxia in a patient with cerebellar infarction by recovery of injured cortico-ponto-cerebellar tract and dentato-rubro-thalamic tract: a diffusion tensor tractography study
19
作者 Sung Ho Jang Hyeok Gyu Kwon 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1470-1472,共3页
Coordinated movement is generated by communication between the cerebrum and cerebellum via the cerebellar peduncles (CPs). The CPs are classified into three types (superior, middle, and inferior), and each includes a ... Coordinated movement is generated by communication between the cerebrum and cerebellum via the cerebellar peduncles (CPs). The CPs are classified into three types (superior, middle, and inferior), and each includes a variety of neural tracts. Among those tracts, the cortico-ponto-cerebellar tract (CPCT), a middle CP, is involved in motor planning and initiation of movement, while the dentato-rubro-thalamic tract (DRTT), a superior CP, is involved in motor coordination, movement timing, verbal fluency, and working memory (Kase et al., 1993. 展开更多
关键词 IMPROVEMENT of ATAXIA injureD cortico-ponto-cerebellar tractography study
下载PDF
Co-culture of astrocytes with neurons from injured brain A time-dependent dichotomy
20
作者 Xiaojing Xu Min Wang Jing Liu Jingya Lv Yanan Hu Huanxiang Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第35期2768-2772,共5页
As supportive cells for neuronal growth and development, much effort has been devoted to the role of astrocytes in the normal state. However, the effect of the astrocytes after injury remains elusive. In the present s... As supportive cells for neuronal growth and development, much effort has been devoted to the role of astrocytes in the normal state. However, the effect of the astrocytes after injury remains elusive. In the present study, neurons isolated from the subventricular zone of injured neonatal rat brains were co-cultured with astrocytes. After 6 days, these astrocytes showed a mature neuron-like appearance and the number of surviving neurons, primary dendrites and total branches was significantly higher than those at 3 days. The neurons began to shrink at 9 days after co-culture with shorter and thinner processes and the number of primary dendrites and total branches was significantly reduced. These experimental findings indicate that astrocytes in the injured brain promote the development of neurons in the early stages of co-culture while these cells reversely inhibit neuronal growth and development at the later states. 展开更多
关键词 injured brain ASTROCYTES NEURONS neural plasticity neurogenesis neural regeneration
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部