Flexible devices produced using organic materials have attracted the attention of many researchers. Important components of these flexible devices include transparent electrodes, which transmit visible light and posse...Flexible devices produced using organic materials have attracted the attention of many researchers. Important components of these flexible devices include transparent electrodes, which transmit visible light and possess conductivity. The present study improved the characteristics of a transparent conductive film that was made of poly(3, 4 ethylenedioxythiophene):poly(styrenesul-fonate) (PEDOT:PSS), an organic conductive material, and that had been prepared using ink-jet printing. To improve the resistance value and visible light transmittance of the film, the film substrate was first cleaned with ultraviolet/ozone treatment, and then the film was annealed after it was deposited on the substrate and dipped into a polar solvent. Consequently, the resistance value of the thin film decreased. However, the surface state of the film changed according to the treatment method and affected its visible light transmittance. Thus, the surface state of the film substrate, the annealing temperature after film deposition, and the dipping treatment with a polar solvent influenced the characteristics of a thin film.展开更多
Recently, a high-performance and low-priced transparent conductive film has been expected to be developed because flexible devices produced using organic materials have been actively studied. An indium tin oxide (ITO)...Recently, a high-performance and low-priced transparent conductive film has been expected to be developed because flexible devices produced using organic materials have been actively studied. An indium tin oxide (ITO) thin film, which has been generally used as a material for a transparent conductive film, has problems, such as fragility to bending stress and depletion of the resource. The present study used poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), an organic electroconductive material, and examined the improvement in the resistance value and visible light transmittance of a transparent conductive film produced using the ink-jet method. In previous studies, we reported that, to improve the resistance value and visible light transmittance of a thin film, it was effective to clean the film substrate with ultraviolet/ozone (UV/O<sub>3</sub>) treatment, anneal the film after it was deposited on the substance, and dip the annealed film into a polar solvent. Focusing on the thin film processing between printing operations, the present study improved resistance value and visible light transmittance by examining both the application methods of a polar solvent and the annealing time between printing operations. As a result, the resistance value and visible light transmittance of a PEDOT:PSS thin film were 390.4 Ω and 86.6%, respectively. This film was obtained by applying a polar solvent and performing annealing for 30 min between printing operations. The printing was performed three times.展开更多
Polymer thin film with uniform thickness and flat surface profile is the key point for polymer light emitting diodes(PLEDs) by inkjet printing. However, the coffee ring effect is usually observed due to the mismatch b...Polymer thin film with uniform thickness and flat surface profile is the key point for polymer light emitting diodes(PLEDs) by inkjet printing. However, the coffee ring effect is usually observed due to the mismatch between the evaporation of the solvent and the decrease of solution volume, which promotes the formation of radial flow from the interior of the drop to the edge. In this paper, coffee ring effects of inkjet printed poly(spirobifluorene) films were proposed to be restrained by decreasing capillary force by adding co-solvent with high boiling point and high viscosity to the main solvent. The low evaporation rate of the co-solvent can reduce the driving force of the radial flow; meanwhile the high viscosity of the co-solvent can increase the resistance of the radial flow. Thus, polymer films with improve uniformity can be obtained due to the suppression of the radial flow. The device performance was greatly improved under the condition of proper film thickness and film uniformity and the maximum luminous efficiency of devices with inkjet printed poly(spirobifluorene) can reach 80% of the spin-coated devices.展开更多
Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation...Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light- emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.展开更多
文摘Flexible devices produced using organic materials have attracted the attention of many researchers. Important components of these flexible devices include transparent electrodes, which transmit visible light and possess conductivity. The present study improved the characteristics of a transparent conductive film that was made of poly(3, 4 ethylenedioxythiophene):poly(styrenesul-fonate) (PEDOT:PSS), an organic conductive material, and that had been prepared using ink-jet printing. To improve the resistance value and visible light transmittance of the film, the film substrate was first cleaned with ultraviolet/ozone treatment, and then the film was annealed after it was deposited on the substrate and dipped into a polar solvent. Consequently, the resistance value of the thin film decreased. However, the surface state of the film changed according to the treatment method and affected its visible light transmittance. Thus, the surface state of the film substrate, the annealing temperature after film deposition, and the dipping treatment with a polar solvent influenced the characteristics of a thin film.
文摘Recently, a high-performance and low-priced transparent conductive film has been expected to be developed because flexible devices produced using organic materials have been actively studied. An indium tin oxide (ITO) thin film, which has been generally used as a material for a transparent conductive film, has problems, such as fragility to bending stress and depletion of the resource. The present study used poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), an organic electroconductive material, and examined the improvement in the resistance value and visible light transmittance of a transparent conductive film produced using the ink-jet method. In previous studies, we reported that, to improve the resistance value and visible light transmittance of a thin film, it was effective to clean the film substrate with ultraviolet/ozone (UV/O<sub>3</sub>) treatment, anneal the film after it was deposited on the substance, and dip the annealed film into a polar solvent. Focusing on the thin film processing between printing operations, the present study improved resistance value and visible light transmittance by examining both the application methods of a polar solvent and the annealing time between printing operations. As a result, the resistance value and visible light transmittance of a PEDOT:PSS thin film were 390.4 Ω and 86.6%, respectively. This film was obtained by applying a polar solvent and performing annealing for 30 min between printing operations. The printing was performed three times.
基金financially supported by the National Natural Science Foundation of China (Nos. 21574130, 51473161, 51873212)the Ministry of Science and Technology of China (No. 2015CB655001)National Key R&D Program of "Strategic Advanced Electronic Materials" (Nos. 2016YFB0401301, 2016YFB04011001)
文摘Polymer thin film with uniform thickness and flat surface profile is the key point for polymer light emitting diodes(PLEDs) by inkjet printing. However, the coffee ring effect is usually observed due to the mismatch between the evaporation of the solvent and the decrease of solution volume, which promotes the formation of radial flow from the interior of the drop to the edge. In this paper, coffee ring effects of inkjet printed poly(spirobifluorene) films were proposed to be restrained by decreasing capillary force by adding co-solvent with high boiling point and high viscosity to the main solvent. The low evaporation rate of the co-solvent can reduce the driving force of the radial flow; meanwhile the high viscosity of the co-solvent can increase the resistance of the radial flow. Thus, polymer films with improve uniformity can be obtained due to the suppression of the radial flow. The device performance was greatly improved under the condition of proper film thickness and film uniformity and the maximum luminous efficiency of devices with inkjet printed poly(spirobifluorene) can reach 80% of the spin-coated devices.
文摘Inkjet priming (IJP) is a versatile technique for realizing high-accuracy patterns in a cost-effective manner. It is considered to be one of the most promising candidates to replace the expensive thermal evaporation technique, which is hindered by the difficulty of fabricating low-cost, large electroluminescent devices, such as organic light- emitting diodes (OLEDs) and quantum dot light-emitting diodes (QLEDs). In this invited review, we first introduce the recent progress of some printable emissive materials, including polymers, small molecules, and inorganic colloidal quantum dot emitters in OLEDs and QLEDs. Subsequently, we focus on the key factors that influence film formation. By exploring stable ink formulation, selecting print parameters, and implementing droplet deposition control, a uniform film can be obtained, which in turn improves the device performance. Finally, a series of impressive inkjet-printed OLEDs and QLEDs prototype display panels are summarized, suggesting a promising future for IJP in the fabrication of large and high-resolution flat panel displays.