期刊文献+
共找到1,621篇文章
< 1 2 82 >
每页显示 20 50 100
Exploring Effective Ways of Green Printing to Reduce Harmful Volatile Organic Compounds Emissions
1
作者 Yizhe Li Yao Wang 《Proceedings of Business and Economic Studies》 2024年第1期199-203,共5页
This paper delves into the transformative shift in the printing industry from traditional petroleum-based inks to sustainable alternatives,focusing on soy ink.Initially,it examines the environmental and health hazards... This paper delves into the transformative shift in the printing industry from traditional petroleum-based inks to sustainable alternatives,focusing on soy ink.Initially,it examines the environmental and health hazards associated with conventional printing,highlighting the detrimental impact of volatile organic compounds(VOCs)and toxic substances in inks.The emergence of soy ink as an eco-friendly solution is then explored.Derived from soybeans,soy ink significantly reduces the release of harmful VOCs and enhances the recyclability of printed materials.The paper discusses not only the environmental benefits of soy ink but also its operational and economic advantages,such as improved deinking capabilities and waste reduction.A notable development in soy ink technology is the use of soy methyl ester,which addresses the challenges of slow drying and penetration associated with traditional inks.The paper concludes by emphasizing the need for continued innovation in sustainable practices within the printing industry,positioning soy ink as a key player in aligning economic goals with environmental responsibility.The shift to soy-based inks exemplifies a broader trend towards sustainability,pivotal for the future health of the planet. 展开更多
关键词 Soy ink Sustainable printing Environmental impact Soy methyl ester Green innovation
下载PDF
Preparation of PDOT:PSS Transparent Conductive Film Using Ink-Jet Printing 被引量:1
2
作者 Atsushi Nitta Kazuki Shimono 《Advances in Materials Physics and Chemistry》 2015年第12期467-476,共10页
Flexible devices produced using organic materials have attracted the attention of many researchers. Important components of these flexible devices include transparent electrodes, which transmit visible light and posse... Flexible devices produced using organic materials have attracted the attention of many researchers. Important components of these flexible devices include transparent electrodes, which transmit visible light and possess conductivity. The present study improved the characteristics of a transparent conductive film that was made of poly(3, 4 ethylenedioxythiophene):poly(styrenesul-fonate) (PEDOT:PSS), an organic conductive material, and that had been prepared using ink-jet printing. To improve the resistance value and visible light transmittance of the film, the film substrate was first cleaned with ultraviolet/ozone treatment, and then the film was annealed after it was deposited on the substrate and dipped into a polar solvent. Consequently, the resistance value of the thin film decreased. However, the surface state of the film changed according to the treatment method and affected its visible light transmittance. Thus, the surface state of the film substrate, the annealing temperature after film deposition, and the dipping treatment with a polar solvent influenced the characteristics of a thin film. 展开更多
关键词 Organic ELECTRONICS TRANSPARENT CONDUCTIVE Film ink-jet printing PEDOT:PSS
下载PDF
Printing Inks' Characteristics 被引量:1
3
作者 Kateryna Savchenko Olena Velychko 《材料科学与工程(中英文B版)》 2013年第7期464-468,共5页
关键词 油墨特性 印刷适性 混合油墨 程序设置 胶印设备 油墨乳化 颜色特征 附加价值
下载PDF
Characteristics Improvement of PEDOT:PSS Transparent Conductive Film Prepared by Ink-Jet Printing 被引量:2
4
作者 Atsushi Nitta Kazuya Kawahara Kohei Miyata 《Advances in Materials Physics and Chemistry》 2016年第8期239-247,共9页
Recently, a high-performance and low-priced transparent conductive film has been expected to be developed because flexible devices produced using organic materials have been actively studied. An indium tin oxide (ITO)... Recently, a high-performance and low-priced transparent conductive film has been expected to be developed because flexible devices produced using organic materials have been actively studied. An indium tin oxide (ITO) thin film, which has been generally used as a material for a transparent conductive film, has problems, such as fragility to bending stress and depletion of the resource. The present study used poly(3, 4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS), an organic electroconductive material, and examined the improvement in the resistance value and visible light transmittance of a transparent conductive film produced using the ink-jet method. In previous studies, we reported that, to improve the resistance value and visible light transmittance of a thin film, it was effective to clean the film substrate with ultraviolet/ozone (UV/O<sub>3</sub>) treatment, anneal the film after it was deposited on the substance, and dip the annealed film into a polar solvent. Focusing on the thin film processing between printing operations, the present study improved resistance value and visible light transmittance by examining both the application methods of a polar solvent and the annealing time between printing operations. As a result, the resistance value and visible light transmittance of a PEDOT:PSS thin film were 390.4 Ω and 86.6%, respectively. This film was obtained by applying a polar solvent and performing annealing for 30 min between printing operations. The printing was performed three times. 展开更多
关键词 PEDOT:PSS ink-jet printing Transparent Conductive Film Flexible Devices
下载PDF
Application of nonlinear color matching model to four-color ink-jet printing
5
作者 SU Xiaohong(苏小红) +5 位作者 ZHANG Tianwen(张田文) GUO Maozu(郭茂祖) WANG Yadong(王亚东) 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2002年第3期270-275,共6页
Through discussing the color matching technology and its application in printing industry the conventional approaches commonly used in color matching, and the difficulties in color matching, a nonlinear color matching... Through discussing the color matching technology and its application in printing industry the conventional approaches commonly used in color matching, and the difficulties in color matching, a nonlinear color matching model based on two step learning is established by finding a linear model by learning pure color data first and then a nonlinear modification model by learning mixed color data. Nonlinear multiple regression is used to fit the parameters of the modification model. Nonlinear modification function is discovered by BACON system by learning mixture data. Experiment results indicate that nonlinear color conversion by two step learning can further improve the accuracy when it is used for straightforward conversion from RGB to CMYK. An improved separation model based on GCR concept is proposed to solve the problem of gray balance and it can be used for three to four color conversion as well. The method proposed has better learning ability and faster printing speed than other historical approaches when it is applied to four color ink jet printing. 展开更多
关键词 Color-matching NONLINEAR multiple regression fuzzy INCIDENCE CLUSTER four-color ink-jet printing.
下载PDF
The Effect of Silica Particle Size on the Performance of Color Ink-jet Printing Paper
6
作者 LIU Ye CHEN Yun-zhi (College of Packaging & Printing Engineering,Tianjin University of Science & Technology,Tianjin,300222) 《中国造纸》 CAS 北大核心 2007年第11期24-26,共3页
In this paper,the effects of four sorts of silica with the particle size range of 4~10μm on coated paper properties and printing performance were studied.The results showed that the smaller particle size silica can ... In this paper,the effects of four sorts of silica with the particle size range of 4~10μm on coated paper properties and printing performance were studied.The results showed that the smaller particle size silica can provide the coated paper with higher density and contrast, better definition and good printing performance. 展开更多
关键词 ink-jet printing SILICA particle size ink-density DEFINITION
下载PDF
Recent advances in meniscus-on-demand three-dimensional micro-and nano-printing for electronics and photonics 被引量:1
7
作者 Shiqi Hu Xiao Huan +3 位作者 Yu Liu Sixi Cao Zhuoran Wang Ji Tae Kim 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期302-317,共16页
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de... The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics. 展开更多
关键词 3D printing ink meniscus functional materials ELECTRONICS PHOTONICS
下载PDF
Carbon-Based Flexible and All-Solid-State Micro-supercapacitors Fabricated by Inkjet Printing with Enhanced Performance 被引量:7
8
作者 Zhibin Pei Haibo Hu +1 位作者 Guojin Liang Changhui Ye 《Nano-Micro Letters》 SCIE EI CAS 2017年第2期68-78,共11页
By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%... By means of inkjet printing technique, flexible and all-solid-state micro-supercapacitors(MSCs) were fabricated with carbon-based hybrid ink composed of graphene oxide(GO,98.0vol.%) ink and commercial pen ink(2.0vol.%). A small amount of commercial pen ink was added to effectively reduce the agglomeration of theGO sheets during solvent evaporation and the following reduction processes in which the presence of graphite carbon nanoparticles served as nano-spacer to separate GO sheets. The printed device fabricated using the hybrid ink,combined with the binder-free microelectrodes and interdigital microelectrode configuration, exhibits nearly 780%enhancement in areal capacitance compared with that of pure GO ink. It also shows excellent flexibility and cycling stability with nearly 100% retention of the areal capacitance after 10,000 cycles. The all-solid-state device can be optionally connected in series or in parallel to meet the voltage and capacity requirements for a given application.This work demonstrates a promising future of the carbonbased hybrid ink for directly large-scale inkjet printing MSCs for disposable energy storage devices. 展开更多
关键词 inkjet printing Flexible devices Graphene oxide(GO) Carbon-based ink Micro-supercapacitors
下载PDF
Highly concentrated graphene oxide ink for facile 3D printing of supercapacitors 被引量:4
9
作者 Shangwen Ling Wenbin Kang +1 位作者 Shanwen Tao Chuhong Zhang 《Nano Materials Science》 CAS 2019年第2期142-148,共7页
3D printing of functional energy storage devices is receiving escalating attention over the years due to the customizable manufacturing flexibility and imparted high areal and gravimetric energy density of three-dimen... 3D printing of functional energy storage devices is receiving escalating attention over the years due to the customizable manufacturing flexibility and imparted high areal and gravimetric energy density of three-dimensional structured devices, which contribute to the creation of numerous new opportunities for futuristic electronics. Graphene-based inks are ideal elements for the realization of 3D printed energy storage devices if the attractive intrinsic physiochemical properties of graphene could be preserved. However, it is still a great challenge to prepare uniformly dispersed graphene-based materials with desired rheological properties for 3D printing. Here we report a facile strategy for 3D printing of supercapacitors from a highly concentrated graphene oxide (GO) ink. The GO is properly dispersed and the ink fulfills the stringent rheological specifications for 3D printing. The printed GO electrode is functionalized with enhanced structural stability for proper reduction to graphene. The printed supercapacitors deliver the potential to linearly scale up in areal capacitance without jeopardizing the gravimetric capacitance when increasing printed layers. The results hold great promise for the construction of 3D structured energy storage devices that cater to the challenges from next-generation electronics. 展开更多
关键词 3D printing Graphene Functional ink SUPERCAPACITOR
下载PDF
Ink formulation, scalable applications and challenging perspectives of screen printing for emerging printed microelectronics 被引量:6
10
作者 Ying Zhang Yuanyuan Zhu +5 位作者 Shuanghao Zheng Liangzhu Zhang Xiaoyu Shi Jian He Xiujian Chou Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期498-513,I0012,共17页
Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.Ho... Screen printing is regarded as a highly competitive manufacture technology for scalable and fast fabrication of printed microelectronics, owing to its advanced merits of low-cost, facile operability and scalability.However, its large-scale application in printed microelectronics is still limited by screen printing functional ink. In this review, we summarize the recent advances of ink formation, typical scalable applications, and challenging perspectives of screen printing for emerging printed microelectronics. Firstly, we introduce the major mechanism of screen printing and the formation of different organic-and aqueous-based inks by various solvents and binders. Next, we review the most widely used applications of screen printing technique in micro-batteries, micro-supercapacitors and micro-sensors, demonstrative of wide applicability.Finally, the perspectives and future challenges in the sight of screen printing are briefly discussed. 展开更多
关键词 Screen printing ink Micro-batteries Micro-supercapacitors Micro-sensors
下载PDF
A systematic printability study of direct ink writing towards high-resolution rapid manufacturing
11
作者 Qingyang Zheng Bin Xie +1 位作者 Zhoulong Xu Hao Wu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期500-517,共18页
Direct ink writing(DIW)holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials,simple operation,and ease of rapid prototyping.Although i... Direct ink writing(DIW)holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials,simple operation,and ease of rapid prototyping.Although it is well known that ink rheology and processing parameters have a direct impact on the resolution and shape of the printed objects,the underlying mechanisms of these key factors on the printability and quality of DIW technique remain poorly understood.To tackle this issue,we systematically analyzed the printability and quality through extrusion mechanism modeling and experimental validating.Hybrid non-Newtonian fluid inks were first prepared,and their rheological properties were measured.Then,finite element analysis of the whole DIW process was conducted to reveal the flow dynamics of these inks.The obtained optimal process parameters(ink rheology,applied pressure,printing speed,etc)were also validated by experiments where high-resolution(<100μm)patterns were fabricated rapidly(>70 mm s^(-1)).Finally,as a process research demonstration,we printed a series of microstructures and circuit systems with hybrid inks and silver inks,showing the suitability of the printable process parameters.This study provides a strong quantitative illustration of the use of DIW for the high-speed preparation of high-resolution,high-precision samples. 展开更多
关键词 direct ink writing extrusion mechanism modelling computational fluid dynamic(CFD) printability process parameters high-resolution printing
下载PDF
Forming mechanism of ink layer on the printing plate in inking process and influencing factors of its thickness
12
作者 初红艳 Xu Kangjian +1 位作者 Zhang Xiaolin Cai Ligang 《High Technology Letters》 EI CAS 2016年第3期297-304,共8页
Ink layer thickness on the printing plate greatly influences uniformity of ink transferred to the substrates,which is an important indicator of printing quality,so the study of ink layer and its thickness is important... Ink layer thickness on the printing plate greatly influences uniformity of ink transferred to the substrates,which is an important indicator of printing quality,so the study of ink layer and its thickness is important for improving the quality of printing products. Ansys CFX is used here to build a model of ink fluid adhering to lower vibrator roller,form inking roller,and printing plate for analyzing ink transferring in inking process. Ink layer thickness on each position of the model is acquired to analyze the forming mechanism of ink layer on printing plate,as well as the influence of oscillation speed of lower vibrator roller and dot area percentage of plate on ink layer thickness of printing plate. It can be concluded that,in the case of fixed ink supplying amount,ink layer thickness increases along with the increasing of oscillation speed,and decreases when the dot area percentage is getting larger and the minimum is got when the dot area percentage is 100%. At last,experiment of plate inking on print ability tester verifies the correctness of the simulation analysis. 展开更多
关键词 printing OSCILLATION dot area percentage ink layer thickness
下载PDF
Investigation of Electrical Stability of Nonwovens with Conductive Circuits Using Printed Conductive Inks
13
作者 A. Maarouf M. Chahid M. Ouarch 《Journal of Textile Science and Technology》 2015年第2期85-92,共8页
In this work, we study the stability of a class of materials obtained by printing a textile with conductive inks using a method called screen printing. Under the action of a certain external factors, the printed circu... In this work, we study the stability of a class of materials obtained by printing a textile with conductive inks using a method called screen printing. Under the action of a certain external factors, the printed circuit suffers deterioration and the conductivity decreases considerably. In this work, we propose to model the overall damage of the textile sheet in terms of the partial damages of the conductive lines. We also apply this approach to evaluate the damage of a system being made of transmission lines printed into nonwoven substrates using different conductive inks. 展开更多
关键词 Electroconductive TEXTILES CONDUCTIVE inks NONWOVENS printED Circuit Damage
下载PDF
Fuzhou Printing Ink Factory
14
《China's Foreign Trade》 2002年第5期64-64,共1页
Found in 1958, Fuzhou Printing inkhas a long history of more than 40 years.It mainly produces various printing ink,interrelated synthetized resin, vehicleand inside coatings and outside coatingsfor three-piece metalli... Found in 1958, Fuzhou Printing inkhas a long history of more than 40 years.It mainly produces various printing ink,interrelated synthetized resin, vehicleand inside coatings and outside coatingsfor three-piece metallic containersincluding food tin cans of the 展开更多
关键词 THAN Fuzhou printing ink Factory MORE
下载PDF
Development of a New Type of High-grade Screen Printing Porcelain Decal Water-based Ink
15
作者 Bingfeng Yu Yingying Yu 《Journal of Zhouyi Research》 2014年第2期13-15,共3页
关键词 水性油墨 高档 天然高分子材料 打印 屏幕 花纸 合成聚合物 青花瓷
下载PDF
An Example of Machine Vision Applied in Printing Quality Checking——Research on the Checking of Printing Quality by Image Processing 被引量:5
16
作者 唐万有 王文凤 《微计算机信息》 北大核心 2008年第6期45-47,共3页
The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image ar... The traditional printing checking method always uses printing control strips,but the results are not very well in repeatability and stability. In this paper,the checking methods for printing quality basing on image are taken as research objects. On the base of the traditional checking methods of printing quality,combining the method and theory of digital image processing with printing theory in the new domain of image quality checking,it constitute the checking system of printing quality by image processing,and expound the theory design and the model of this system. This is an application of machine vision. It uses the high resolution industrial CCD(Charge Coupled Device) colorful camera. It can display the real-time photographs on the monitor,and input the video signal to the image gathering card,and then the image data transmits through the computer PCI bus to the memory. At the same time,the system carries on processing and data analysis. This method is proved by experiments. The experiments are mainly about the data conversion of image and ink limit show of printing. 展开更多
关键词 机器视觉 印刷质量检测 图像处理 数据转换 墨量显示
下载PDF
Highly Concentrated,Conductive,Defect-free Graphene Ink for Screen-Printed Sensor Application 被引量:6
17
作者 Dong Seok Kim Jae-Min Jeong +3 位作者 Hong Jun Park Yeong Kyun Kim Kyoung G.Lee Bong Gill Choi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期17-30,共14页
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr... Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices. 展开更多
关键词 Graphene ink Fluid dynamics Screen printing Ion sensor Real-time monitoring
下载PDF
A focus review on 3D printing of wearable energy storage devices 被引量:2
18
作者 Yuxuan Zhu Jiadong Qin +6 位作者 Ge Shi Chuang Sun Malaika Ingram Shangshu Qian Jiong Lu Shanqing Zhang Yu Lin Zhong 《Carbon Energy》 SCIE CAS 2022年第6期1242-1261,共20页
Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cat... Three-dimensional(3D)printing has gained popularity in a variety of applications,particularly in the manufacture of wearable devices.Aided by the large degree of freedom in customizable fabrication,3D printing can cater towards the practical requirements of wearable devices in terms of light weight and flexibility.In particular,this focus review aims to cover the important aspect of wearable energy storage devices(WESDs),which is an essential component of most wearable devices.Herein,the topics discussed are the fundamentals of 3D printing inks used,the optimizing strategies in improving the mechanical and electrochemical properties of wearable devices and the recent developments and challenges of wearable electrochemical systems such as batteries and supercapacitors.It can be expected that,with the development of 3D printing technology,realization of the full potential of WESDs and seamless integration into smart devices also needs further in-depth investigations. 展开更多
关键词 3D printing BATTERIES direct ink writing SUPERCAPACITORS wearable energy storage devices
下载PDF
Research on HCI Prototype Design of Ink Automatic Control System for Offset Printer
19
作者 ZHANG Jianyu~1 GAO Lixin~1 CUI Lingli~1 WANG Yingwang~2 LI Xianghui~2 1.Key Laboratory of Advanced Manufacturing Technology,Beijing University of Technology,Beijing 100022,China, 2.Tangshan Iron and Steel Corp.LTD,Tangshan 063000,China 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S2期772-776,共5页
In order to solve the low efficiency and poor precision problems of traditional ink control methods on domestic offset printers,developing modern ink automatic control system has become more and more urgent.As an impo... In order to solve the low efficiency and poor precision problems of traditional ink control methods on domestic offset printers,developing modern ink automatic control system has become more and more urgent.As an important subsystem,the hu- man computer interface (HCI) is a key function for the wholly automatic control.Once this goal is obtained,all the printing pro- cedures especially the automatic control of ink volume should be finished with human computer interface in different areas.consid- ering the HCI design theory and structure characteristics of domestic printers comprehensively,the HCI prototype for automatic ink control system has been developed based on Visual Basic platform.As the individual ink key is instead of the integrated key,the di- vision result of ink fountain can be displayed on the interface.Through the interface,the dynamic adjusting functions such as mod- ifying ink volume,locking or unlocking each ink key and real-time displaying the adjusting results etc.can be completed.The sim- ulation test has shown that the opening and practical feature of the prototype is satisfactory. 展开更多
关键词 printing machine ink automatic control human COMPUTER interface
下载PDF
3D printing of architectured graphene-based aerogels by cross-linking GO inks with adjustable viscoelasticity for energy storage devices 被引量:1
20
作者 San-Can Han Jia-Le Quan +4 位作者 Fu-Guo Zhou Yu-Hua Xue Na Li Feng-Yu Li Ding Wang 《Rare Metals》 SCIE EI CAS CSCD 2023年第3期971-981,共11页
Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks ... Three-dimensional(3D)functional graphenebased architecture with superior electrical conductivity and good mechanical strength has promising applications in energy storage and electrics.Viscoelasticity-adjustable inks make it possible to achieve desired 3D architectures with interconnected and continuous interior networks by microextrusion printing.In this work,ultra-low-concentration graphene oxide(GO)inks of~15 mg·ml-1 have been obtained and demonstrated in direct 3D printing with a facile cross-linking(direct ink writing).The rheological behavior of the GO strategy by cations,which is the lowest concentration to achieve direct ink writing inks,could be adjusted from 1×10^(4) to 1×10^(5) Pa·s^(-1) with different concentrations of cations due to strong cross-linking networks between GO sheets and cations.Meanwhile,the specific strength and electrical conductivity of 3D-printed graphene architecture are notably enhanced,reaching up to 51.7×10^(3) N·m·kg^(-1)and 119 S·m^(-1),which are superior to conventional graphene aerogels.Furthermore,3D printing graphene-based architecture assembled in micro-superc apacitor exhibits excellent electrochemical performance,which can be ascribed to the effective ion transportation through the interconnected networks.The strategy demonstrated is useful in the design of complex-shaped,graphene-based architectures for scalable manufacturing of practical energy storage applications. 展开更多
关键词 Three-dimensional(3D)printing Graphene oxide(GO)inks Cross-linking strategy Graphene-based architecture
原文传递
上一页 1 2 82 下一页 到第
使用帮助 返回顶部