期刊文献+
共找到2,161篇文章
< 1 2 109 >
每页显示 20 50 100
The Numerical Simulation of Gas Turbine Inlet-Volute Flow Field
1
作者 Tao Jiang Kezhen Huang 《World Journal of Mechanics》 2013年第4期230-235,共6页
The structural and aerodynamic performance of the air inlet volute has an important influence on the performance of the gas turbine. On one hand, it requires the airflow flowing through inlet volute as even as possibl... The structural and aerodynamic performance of the air inlet volute has an important influence on the performance of the gas turbine. On one hand, it requires the airflow flowing through inlet volute as even as possible, in order to reduce the pressure loss, to avoid a decrease in the effective output power and an increase of the fuel consumption rate of the internal combustion engine which indicate the inefficiency of the entire power unit;On the other hand, it requires the size of the inlet volute to be as small as possible in order to save mounting space and production costs. The thesis builds the structure model and develops flow fields numerical simulation of several different sizes of the inlet volutes. Further, the unreasonable aerodynamic structure is improved according to the flow field characteristics and thereby, a better aerodynamic performance of the inlet volute is obtained. 展开更多
关键词 AXIAL Flow COMPRESSOR inlet VOLUTE numerical simulation Pressure LOSS Uneven DEGREE
下载PDF
Numerical Investigation of the Aerodynamic Performance Affected by Spiral Inlet and Outlet in a Positive Displacement Blower 被引量:4
2
作者 LIU Xiaomin LU Jun +1 位作者 GAO Renheng XI Guang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期957-966,共10页
The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,whi... The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers. 展开更多
关键词 positive displacement blower spiral inlet and outlet unsteady flow dynamic mesh technique numerical simulation
下载PDF
NUMERICAL SIMULATIONS OF THE HYDRAULIC CHARACTERISTICS OF SIDE INLET/OUTLETS 被引量:19
3
作者 YE Fei GAO Xue-ping 《Journal of Hydrodynamics》 SCIE EI CSCD 2011年第1期48-54,共7页
The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations,covering the flow distribution,head loss,vortex,and others.Based on the physical model test,the reali... The hydraulic characteristics at the side inlet/outlet of pumped storage plants is studied by numerical simulations,covering the flow distribution,head loss,vortex,and others.Based on the physical model test,the realizable k-εturbulence model is used in the 3-D simulation of the side inlet/outlet.A new scheme is suggested to obtain the uneven flow distribution over three branch orifices.The variation of the free surface with the reservoir water level under the pumped condition is simulated,with results consistent with the experimental results. 展开更多
关键词 hydraulic characteristics side inlet/outlet pumped storage plant numerical simulation realizable k-εturbulence model
原文传递
Calculation Method of Passive Residual Heat Removal Heat Exchanger and Numerical Simulation 被引量:1
4
作者 Qiming Men Xuesheng Wang +1 位作者 Xiang Zhou Xiangyu Meng 《Journal of Power and Energy Engineering》 2014年第9期8-14,共7页
The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in I... The tube inside and outside heat transfer mechanism of Passive Residual Heat Removal Heat Exchanger (PRHR HX) was analyzed. The calculation method of this special heat exchanger under natural convection condition in In-containment Refueling Water Storage Tank (IRWST) was carried out. The single-tube coupling model three-dimensional natural circulation in the IRWST was simulated numerically using Fluent. The heat transfer and flow characteristics of the fluid in IRWST were obtained. The comparison of the results between theoretical arithmetic and numerical simulation showed that the theoretical calculation method is suitable for the heat transfer calculation of PRHR HX. 展开更多
关键词 PASSIVE RESIDUAL HEAT Removal HEAT EXCHANGER HEAT Transfer calculation Method numerical simulation Natural CONVECTION
下载PDF
Numerical and experimental research on different inlet configurations of high speed centrifugal compressor 被引量:9
5
作者 LI Du YANG Ce +2 位作者 ZHOU Mi ZHU ZhiFu WANG Hang 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第1期174-181,共8页
Three different inlet configurations,including a original straight pipe and two bend pipes with different axial length,for a high speed low mass flow centrifugal compressor were modeled with whole blade passages and s... Three different inlet configurations,including a original straight pipe and two bend pipes with different axial length,for a high speed low mass flow centrifugal compressor were modeled with whole blade passages and simulated unsteadily by 3D viscous Navier-Stokes equations.The performance disparities of compressor stage were tested and verified by experiments in which dynamic pressure data acquisition of internal flow field was performed.As the result shows,the choke point decreases to lower mass flow rate due to the distortion caused by bend-pipe inlet and is aggravated as the rotation speed increases.The distortion effect spreads circumferentially in impeller and makes the flow structure varied.The longer axial distance bent inlet leads to larger radial distortion and heavy blockage at mid-span under large mass flow mainly causes compressor choke margin nar-rowed.Bend pipe distortion brings an impact up to diffuser on unsteady pressure pulsation caused by blades sweep and the impact appears more powerful when it is closer to volute tongue. 展开更多
关键词 centrifugal compressor inlet distortion numerical simulation dynamic data acquisition
原文传递
Adjusting principle of gas jet controlling inlet and numerical verification 被引量:2
6
作者 FENG XiPing LIN ZhiYuan +2 位作者 ZHENG Ya LI JinXian CAO Qi 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第11期2981-2986,共6页
To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the ex... To improve the inlet performance of a ramjet working under variable conditions,a design is proposed by controlling the inlet with jet controlling,which combines the method of reducing the sealing Mach number of the external waves and the technique of controlling inlet by jet controlling.Three inlets were designed to analyze the feasibility and a numerical simulation method was used to simulate the three inlet flow fields.The adjustment mechanism of the design was studied through analysis of the simulation results.The design was verified by comparing the performances of the three inlets.The study showed that the method of reducing the sealing Mach number of the external wave system can improve the flow coefficient when the inlet works at low Mach numbers.The technique of controlling inlet by jet controlling can homogenize inlet flow fields at high Mach numbers,reduce effective throat area and increase the total pressure recovery(TPR).Adjustable inlets controlled by jet controlling demonstrate good performance at certain working ranges. 展开更多
关键词 RAMJET inlet jet controlling adjusting mechanism numerical simulation
原文传递
Numerical Investigation of Inlet Distortion on an Axial Flow Compressor Rotor with Circumferential Groove Casing Treatment 被引量:1
7
作者 Huang Jian Wu Hu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第6期496-505,共10页
On the base of an assumed steady inlet circumferential total pressure distortion, three-dimensional time-dependent numerical simulations are conducted on an axial flow subsonic compressor rotor. The performances and f... On the base of an assumed steady inlet circumferential total pressure distortion, three-dimensional time-dependent numerical simulations are conducted on an axial flow subsonic compressor rotor. The performances and flow fields of a compressor rotor, either casing treated or untreated, are investigated in detail either with or without inlet pressure distortion. Results show that the circumferential groove casing treatment can expand the operating range of the compressor rotor either with or without inlet pressure distortion at the expense of a drop in peak isentropic efficiency. The casing treatment is capable of weakening or even removing the tip leakage vortex effectively either with or without inlet distortion. In clean inlet circumstances, the enhancement and forward movement of tip leakage vortex cause the untreated compressor rotor to stall. By contrast, with circumferential groove casing, the serious flow separation on the suction surface leads to aerodynamic stalling eventually. In the presence of inlet pressure distortion, the blade loading changes from passage to passage as the distorted inflow sector is traversed. Similar to the clean inlet circumstances, with a smooth wall casing, the enhancement and forward movement of tip leakage vortex are still the main factors which lead to the compressor rotor stalling eventually. When the rotor works trader near stall conditions, the blockage resulting from the tip leakage vortex in all the passages is very serious. Especially in several passages, flow-spillage is observed. Compared to the clean inlet circumstances, circumferential groove casing treatment can also eliminate the low energy zone in the outer end wall region effectively. 展开更多
关键词 axial flow compressor inlet distortion casing treatment aerodynamic stability numerical simulation
原文传递
Numerical simulation of the blast wave of a multilayer composite charge 被引量:13
8
作者 Xiao-wen Hong Wei-bing Li +2 位作者 Wei Cheng Wen-bin Li He-yang Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第1期96-106,共11页
The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is establishe... The numerical simulation of a blast wave of a multilayer composite charge is investigated.A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program.Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25-0.5 cm and 1-3 cm.The Euler--fluxcorrected transport solver is found to be suitable for the far-field calculation after mapping.A numerical simulation is conducted to study the formation,propagation,and interaction of the shock wave of the composite charge for different initiation modes.It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge.Additionally,it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation,and the peak pressure of the shock wave exponentially decays,fitting the calculation formula of the peak overpressure attenuation under different initiation modes,which is obtained and verified by experiment.The difference between numerical and experimental results is less than 10%,and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation. 展开更多
关键词 Structure of COMPOSITE CHARGE INITIATION mode BLAST wave Cell size in calculation numerical simulation
下载PDF
Theoretical and numerical simulation study on jet formation and penetration of different liner structures driven by electromagnetic pressure 被引量:3
9
作者 Jian-hao Dou Xin Jia +4 位作者 Zheng-xiang Huang Xiao-hui Gu Ying-min Zheng Bin Ma Qiang-qiang Xiao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第3期846-858,共13页
The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characte... The use of a shaped liner driven by electromagnetic force is a new means of forming jets. To study the mechanism of jet formation driven by electromagnetic force, we considered the current skin effect and the characteristics of electromagnetic loading and established a coupling model of "ElectriceMagnetic eForce" and the theoretical model of jet formation under electromagnetic force. The jet formation and penetration of conical and trumpet liners have been calculated. Then, a numerical simulation of liner collapse under electromagnetic force, jet generation, and the stretching motion were performed using an ANSYS multiphysics processor. The calculated jet velocity, jet shape, and depth of penetration were consistent with the experimental results, with a relative error of less than 10%. In addition, we calculated the jet formation of different curvature trumpet liners driven by the same loading condition and obtained the influence rule of the curvature of the liner on jet formation. Results show that the theoretical model and the ANSYS multiphysics numerical method can effectively calculate the jet formation of liners driven by electromagnetic force, and in a certain range, the greater the curvature of the liner is, the greater the jet velocity is. 展开更多
关键词 Electromagnetic field Shaped charge jet formation Theoretical calculation numerical simulation
下载PDF
Improvement in Time Efficiency in Numerical Simulation for Solid Propellant Rocket Motors(SPRM) 被引量:1
10
作者 Valeriy BUCHARSKYI ZHANG Li-hui WAN Yi-lun 《推进技术》 EI CAS CSCD 北大核心 2018年第1期92-99,共8页
The main purpose of the present work is to study the possibilities of reducing calculation time while maintaining the validity in the numerical simulation of the combustion product flow in SPRM chamber.Three ways of d... The main purpose of the present work is to study the possibilities of reducing calculation time while maintaining the validity in the numerical simulation of the combustion product flow in SPRM chamber.Three ways of decreasing the calculation time-the use of numerical methods of high accuracy order,the reduction in spatial dimension of the problem,and the use of physical features of the processes in SPRM chamber while constructing a calculation model-were considered.Presented calculation data show that the use of these approaches makes it possible to reduce the time for solving the problems of SPRM simulation significantly(up to 100times).Also conclusions about the applicability of the mentioned above approaches in SPRM design were made. 展开更多
关键词 numerical simulation SOLID PROPELLANT ROCKET MOTOR calculation time reduction
下载PDF
Theoretical and numerical simulation of critical gas supply of refuge chamber 被引量:1
11
作者 Shao Hao Jiang Shuguang +3 位作者 Tao Weiyong Wu Zhengyan Zhang Weiqing Wang Kai 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第3期389-393,共5页
The personnel in refuge chamber absorb O_2 and exhale CO_2 all the time. Supplying O_2 and removing CO_2 are the basic function of refuge chamber. After disaster occurs, the supply of the compressed air or oxygen for ... The personnel in refuge chamber absorb O_2 and exhale CO_2 all the time. Supplying O_2 and removing CO_2 are the basic function of refuge chamber. After disaster occurs, the supply of the compressed air or oxygen for personnel in refuge chamber is limited. Thus, how to effectively use the compressed air and oxygen and try to improve the time of supply has a great significance. Supplying more oxygen will result in waste, while supplying less oxygen will cause its concentration to be lower, and harm life safety. This research uses the theoretical calculation and numerical simulation, finds critical gas supply for refuge chamber, and illuminates the change law of gas concentration with critical gas supply in refuge chamber,which provides theoretical guidance for effective use of compressed air and oxygen in refuge chamber. 展开更多
关键词 Refuge chamber Theoretical calculation Critical gas supply numerical simulation
下载PDF
Development of a coupled supersonic inlet-fan Navier–Stokes simulation method 被引量:7
12
作者 Qiushi LI Yongzhao LYU +3 位作者 Tianyu PAN Da LI Ha'nan LU Yifang GONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第2期237-246,共10页
A coupled supersonic inlet-fan Navier–Stokes simulation method was developed by using COMSOL-CFD code. The flow turning, pressure rise and loss effects across blade rows of the fan and the inlet-fan interactions were... A coupled supersonic inlet-fan Navier–Stokes simulation method was developed by using COMSOL-CFD code. The flow turning, pressure rise and loss effects across blade rows of the fan and the inlet-fan interactions were taken into account as source terms of the governing equations without a blade geometry by a body force model. In this model, viscous effects in blade passages can also be calculated directly, which include the exchange of momentum between fluids and detailed viscous flow close to walls. NASA Rotor 37 compressor test rig was used to validate the ability of the body force model to estimate the real performance of blade rows. Calculated pressure ratio characteristics and the distribution of the total pressure, total temperature, and swirl angle in the span direction agreed well with experimental and numerical data. It is shown that the body force model is a promising approach for predicting the flow field of the turbomachinery. Then, coupled axisymmetric mixed compression supersonic inlet-fan simulations were conducted at Mach number 2.8 operating conditions. The analysis includes coupled steady-state performance, and effects of the fan on the inlet. The results indicate that the coupled simulation method is capable of simulating behavior of the supersonic inlet-fan system. 展开更多
关键词 Body force model Coupled simulation Rapid numerical method Supersonic inlet-fan Viscous flow
原文传递
Structural Optimization of the Inlet Header of Supercritical Carbon Dioxide Printed Circuit Board Heat Exchanger
13
作者 WANG Yanquan LU Yuanwei +3 位作者 WANG Yuanyuan HAN Xinlong WU Yuting GAO Qi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第4期1458-1467,共10页
Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation.However,the uniformity of supercritical carbon dioxide entering the heat... Supercritical carbon dioxide printed circuit board heat exchangers are expected to be applied in third-generation solar thermal power generation.However,the uniformity of supercritical carbon dioxide entering the heat exchanger has a significant impact on the overall performance of the heat exchanger.In order to improve the uniformity of flow distribution in the inlet header,this article studies and optimizes the inlet header of a printed circuit board heat exchanger through numerical simulation.The results indicate that when supercritical carbon dioxide flows through the header cavity,eddy currents will be generated,which will increase the uneven distribution of flow rate,while reducing the generation of eddy currents will improve the uniform distribution of flow rate.When the dimensionless factor of the inlet header is 6,the hyperbolic configuration is the optimal structure.We also reduced the eddy current region by adding transition segments,and the results showed that the structure was the best when the dilation angle was 10°,which reduced the non-uniformity by 21%compared to the hyperbolic configuration,providing guidance for engineering practice. 展开更多
关键词 third-generation solar thermal power generation inlet header PCHE numerical simulation
原文传递
Effect of expansion waves on cowl shock wave and boundary layer interaction in hypersonic inlet
14
作者 Guangwei Wu Ziao Wang +4 位作者 Teng Shi Zhibin Zhang Weiyu Jiang Fuxu Quan Juntao Chang 《Propulsion and Power Research》 SCIE 2024年第1期80-97,共18页
The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the ... The interaction of cowl shock wave and boundary layer has a crucial effect on the stability,operability and performance of hypersonic inlets.Many studies on inhibiting the sep-aration and managing the strength of the interaction of the shock wave and boundary layer with expansion corner have been conducted.However,the expansion waves near the circular arc shoulder to effectively control the interaction and cowl shock arrangement is little investigated.Therefore,the interaction of the cowl shock wave and boundary layer under thefluence of the expansion waves is studied by inviscid and viscous numerical simulations.The results reveal that the expansion waves have an important impact on the interaction between the cowl shock wave and boundary layer and the strength of shock wave,and that there are four types of inter-action processes with the change of the relative impingement positions of cowl shock wave.The expansion waves have a different influence on the shock wave and boundary layer inter-action at different incident points.When the incident point of the cowl shock wave goes far downstream from the end of the circular arc shoulder,the influence of expansion waves is weakened,and the magnitude of separation zone increases.However,when the expansion waves are applied to the interaction of the cowl shock wave and boundary layer on the circular arc shoulder,the separation can be effectively controlled.In particular,while the expansion waves interact with the shock wave and boundary layer in the back half of the circular arc shoulder,the separation is best inhibited.Compared with the upstream and downstream inci-dent points,the scale of separation area in the optimal control region is reduced by 65.3%at most.Furthermore,the total pressure recovery coefficientfirst increases and then decreases when the cowl moves from upstream to downstream,and the total pressure recovery coefficient reaches the maximum value of 68.36%at the incident position of cowl shock wave d Z 8.09d0. 展开更多
关键词 Boundary layer Expansion waves Cowl shock wave Separation Hypersonic inlet Circular arc shoulder Inviscid and viscous numerical simulations
原文传递
Numerical study of fillet weld leg height of sleeve repair welding for in-service pipeline 被引量:2
15
作者 Qiao Ling Han Tao +2 位作者 Zhang Hongjie Wu Qian Bao Liangliang 《China Welding》 EI CAS 2018年第1期32-40,共9页
This paper presents a mechanical calculation and numerical simulation of the fillet weld of sleeve repair.The mechanical analysis based on the yield criteria is performed to obtain the minimum value of the fillet weld... This paper presents a mechanical calculation and numerical simulation of the fillet weld of sleeve repair.The mechanical analysis based on the yield criteria is performed to obtain the minimum value of the fillet weld leg height to ensure the strength and loadbearing capacity of the weld. Within the framework of numerical simulation,the parameters of double ellipsoid heat source are determined by fitting method and the simulated molten pool morphology agrees well with the practical weld. Finite element models with various weld leg height are performed to predict the distribution and magnitude of the deformation and stress. The simulation takes into account thermal,metallurgical and mechanical factors,and the maximum value of the fillet weld leg height is obtained based on the magnitude of the deformation and stress.The mechanical calculation and numerical simulation results show that 1.2-2 times wall thickness is an optimal range of fillet weld leg height. And reasonable parameters of sleeve repair for in-service welding are provided for engineering field,which can improve the service life of the weld and production efficiency. 展开更多
关键词 FILLET WELD LEG HEIGHT numerical simulation THEORETICAL calculation stress deformation
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
16
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 High-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
UHPC免拆模板钢筋混凝土柱抗震性能参数分析及承载力计算
17
作者 王朋 尤学辉 +3 位作者 史庆轩 陶毅 戎翀 黄杰 《建筑科学与工程学报》 北大核心 2025年第1期41-50,共10页
为研究UHPC免拆模板钢筋混凝土柱在不同参数影响下的抗震性能,基于ABAQUS软件中混凝土塑性损伤(CDP)模型,考虑模板与后浇混凝土的界面接触滑移建立了数值分析模型;讨论了轴压比、普通混凝土强度、配筋率和模板厚度等参数对UHPC免拆模板... 为研究UHPC免拆模板钢筋混凝土柱在不同参数影响下的抗震性能,基于ABAQUS软件中混凝土塑性损伤(CDP)模型,考虑模板与后浇混凝土的界面接触滑移建立了数值分析模型;讨论了轴压比、普通混凝土强度、配筋率和模板厚度等参数对UHPC免拆模板-RC柱承载力和延性的影响;基于平截面假定,给出了UHPC免拆模板-RC柱的承载力计算公式。结果表明:建立的有限元模型能较好地模拟试件的承载力、骨架曲线和混凝土损伤情况;随着轴压比的增大,试件的承载力和延性均先增大后减小,轴压比为0.7时承载力和延性均最高;随着混凝土强度的提高,试件的承载力逐渐增大,但增长幅度却逐渐降低;提高配筋率可以提高试件的承载力,但对延性影响不大;模板的厚度对试件的承载力和延性影响显著,当模板厚度从10 mm增加到25 mm时,试件的承载力提高了24.1%,但其延性降低了43.8%,在保证试件拥有足够的承载力和变形能力下,建议UHPC模板厚度选择15~20 mm;基于平截面假定得到的承载力计算方法可以很好地预测试件的承载能力,计算值与模拟值(试验值)的比值均值为0.97,标准差为0.04。 展开更多
关键词 UHPC免拆模板 钢筋混凝土柱 抗震性能 数值模拟 承载力计算
下载PDF
Hydraulic design and pre-whirl regulation law of inlet guide vane for centrifugal pump 被引量:15
18
作者 TAN Lei ,CAO ShuLiang&GUI ShaoBo State Key Laboratory of Hydroscience and Engineering,Department of Thermal Engineering,Tsinghua University,Beijing 100084,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第8期2142-2151,共10页
A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry ... A new hydraulic design method of three-dimensional guide vane for centrifugal pump is proposed on the assumption that the fluid at the outlet of guide vane satisfies the uniform velocity moment condition.The geometry of blade is controlled by the distributed rule of blade angles along the meridional streamline which is described by a fourth-order polynomial.Experiment results demonstrate that the designed guide vane can overcome the drawback of two-dimensional guide vane,enlarge the high efficiency scope and improve the hydraulic performance of centrifugal pump on the off-design operation conditions.In comparison with the performance of the centrifugal pump without inlet guide vane,the peak value of efficiency can be enhanced by 2.13% after the three-dimensional guide vane was being installed.The three-dimensional entire flow field of the centrifugal pump with inlet guide vane is simulated,and the basic principle and mechanism of inlet guide vane pre-whirl regulation are analyzed.The validity of design method has been proved. 展开更多
关键词 CENTRIFUGAL pump inlet guide VANE pre-whirl REGULATION hydraulic design method experiment numerical simulation
原文传递
基于二次本构关系修正湍流模型的曲面乘波进气道性能分析
19
作者 王刚 张帅 +2 位作者 宋晓啸 张继发 郑耀 《推进技术》 北大核心 2025年第2期25-40,共16页
高超声速飞行器要求前体与进气道一体化设计,目前已有众多前体/进气道一体化方案被提出,然而在高超声速进气道内精确有效的湍流数值计算分析方法仍有不足。本文实现了一种基于二次本构关系(Quadratic Constitutive Relation,QCR)的高精... 高超声速飞行器要求前体与进气道一体化设计,目前已有众多前体/进气道一体化方案被提出,然而在高超声速进气道内精确有效的湍流数值计算分析方法仍有不足。本文实现了一种基于二次本构关系(Quadratic Constitutive Relation,QCR)的高精度、高效率的湍流修正模型(SA-QCR2020)。采用两种标准验证算例表明,SA-QCR2020湍流模型能够更接近真实的流动物理,对计算算例性能模拟更为准确。随后本文采用该修正湍流模型对曲面乘波进气道在侧滑角为0°,4°,8°,攻角为-8°,0°,8°工况下的性能进行了研究。结果表明,在设计工况下该曲面乘波进气道内从喉道处产生三维涡,并向后发展,随流动扩散至整个流场区域。侧滑角对进气道起动后的性能影响不大,攻角对进气道起动后的性能影响较大,且攻角越大,前缘激波越强,对来流的减速增压作用越强。研究揭示了该曲面乘波进气道在非设计工况下的性能规律,并表明该进气道能够在大攻角、大侧滑角工况下保证飞行器推进系统有效工作。 展开更多
关键词 曲面乘波进气道 二次流 进气道性能 湍流模型 数值模拟
下载PDF
THREE-DIMENSIONAL REGULARITIES OF DISTRIBUTION OF AIR-INLET CHARACTERISTIC VELOCITY IN NATURAL-DRAFT WET COOLING TOWER 被引量:7
20
作者 WANG Kai SUN Feng-zhong ZHAO Yuan-bin GAO Ming SHI Yue-tao 《Journal of Hydrodynamics》 SCIE EI CSCD 2008年第3期323-330,共8页
A model for heat and mass transfer in a natural-draft wet cooling tower was established. Numerical simulation with the κ-ε turbulent model was conducted. Distribution rules of air inlet aerodynamic field were studie... A model for heat and mass transfer in a natural-draft wet cooling tower was established. Numerical simulation with the κ-ε turbulent model was conducted. Distribution rules of air inlet aerodynamic field were studied. Field experiments were done in a cooling tower in power plant, and the test data was compared with the related results. The definition of characteristic air velocity was proposed and its influencing factors, such as the cross-wind velocity and circumferential angle, were quantitatively studied. It can be used to evaluate the performance of cooling tower and to calculate the ventilation quantity and resistance of air inlet. It is also a theoretical basis for cooling tower design and performance optimization. 展开更多
关键词 cooling tower flow field numerical simulation air inlet
原文传递
上一页 1 2 109 下一页 到第
使用帮助 返回顶部