In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pi...In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pile diameter, relative density and end conditions of piles. In this paper, effects of inner sleeves on inner frictional resistance are discussed. The experiments were conducted on a medium-dense sandy ground using laboratory-scale piles. It was observed that the piles penetrated under partially-plugged or unplugged state. The results suggest that inner fiictional resistance, Qin increases with sleeve height, l linearly and requires 2D (D is pile outer diameter) of l to produce a large as 50% of Qt by Qin (Qt is total resistance). The results also indicate that bearing capacity increases with wall thickness at the pile tip, which can be attributed to the increase in annular area. The results also indicate that soil plug height is independent of sleeve height. The results also reveal that the penetration of straight piles is closer to unplugged state than the sleeved piles. The results of incremental filling ratio and plug length ratio also indicate that the degree of soil plugging is affected by the sleeve height.展开更多
崩壁土体抗剪强度随水分变化的规律是研究崩岗发生机理的关键,但不同剪切方式得出的抗剪特性可能存在差异。该研究采用直接剪切和三轴剪切试验方法,在100、200、300和400 k Pa 4个围压下,测量10%~30%之间5个不同体积含水率下崩岗红土的...崩壁土体抗剪强度随水分变化的规律是研究崩岗发生机理的关键,但不同剪切方式得出的抗剪特性可能存在差异。该研究采用直接剪切和三轴剪切试验方法,在100、200、300和400 k Pa 4个围压下,测量10%~30%之间5个不同体积含水率下崩岗红土的抗剪应力和内摩擦角,确定典型崩岗土体抗剪特征随水分变化规律。结果表明:直接剪切试验中当土壤体积含水率在10%~15%之间时,黏聚力的最高值达80 k Pa,随着土壤含水率增加,黏聚力和内摩擦角逐渐降低到最小。三轴剪切试验得出的结果与直接剪切试验相似,但黏聚力总体接近或大于直接剪切试验结果,而内摩擦角小于直接剪切试验结果,这与2种试验的土样制备方法、试验原理等密切相关。研究可为花岗岩崩岗区崩岗土体抗剪强度测定方法合理选择提供依据。展开更多
文摘In open-ended piles, inner friction is developed between inner pile shaf and the inner soil. Inner frictional resistance depends largely on the degree of soil plugging, which is influenced by many factors including pile diameter, relative density and end conditions of piles. In this paper, effects of inner sleeves on inner frictional resistance are discussed. The experiments were conducted on a medium-dense sandy ground using laboratory-scale piles. It was observed that the piles penetrated under partially-plugged or unplugged state. The results suggest that inner fiictional resistance, Qin increases with sleeve height, l linearly and requires 2D (D is pile outer diameter) of l to produce a large as 50% of Qt by Qin (Qt is total resistance). The results also indicate that bearing capacity increases with wall thickness at the pile tip, which can be attributed to the increase in annular area. The results also indicate that soil plug height is independent of sleeve height. The results also reveal that the penetration of straight piles is closer to unplugged state than the sleeved piles. The results of incremental filling ratio and plug length ratio also indicate that the degree of soil plugging is affected by the sleeve height.
文摘崩壁土体抗剪强度随水分变化的规律是研究崩岗发生机理的关键,但不同剪切方式得出的抗剪特性可能存在差异。该研究采用直接剪切和三轴剪切试验方法,在100、200、300和400 k Pa 4个围压下,测量10%~30%之间5个不同体积含水率下崩岗红土的抗剪应力和内摩擦角,确定典型崩岗土体抗剪特征随水分变化规律。结果表明:直接剪切试验中当土壤体积含水率在10%~15%之间时,黏聚力的最高值达80 k Pa,随着土壤含水率增加,黏聚力和内摩擦角逐渐降低到最小。三轴剪切试验得出的结果与直接剪切试验相似,但黏聚力总体接近或大于直接剪切试验结果,而内摩擦角小于直接剪切试验结果,这与2种试验的土样制备方法、试验原理等密切相关。研究可为花岗岩崩岗区崩岗土体抗剪强度测定方法合理选择提供依据。