Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.How...Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.展开更多
Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key mate...Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key material parameters,namely,anisotropic index in thickness direction,yield strength,hardening exponent,strengthening factor and elastic modulus on the formability of inner rib,tendency of wall fracture and degree of inhomogeneous deformation of finished spun parts were obtained.The achievements provide an important guide for selecting reasonable spinning material,and are very significant for the optimum design and precision control of power spinning process of parts with transverse inner rib.展开更多
Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micr...Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micrography analysis reveals that severe plastic deformation leads to grain refinement, grain orientation and grain flow line of the spun part. Based on rigid-plastic finite element method, DEFORME3D finite element code was used to simulate and analyze multi-pass backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Finite element simulation results involve the distributions of the strain, the shape variation of the inner ribs as well as the prediction of the spinning loading.展开更多
A 3D elasto-plastic finite element(FE)model of power spinning of thin-walled aluminum alloy shell with hoop inner rib was established under software ABAQUS.Key technologies were dealt with reasonably.The reliability o...A 3D elasto-plastic finite element(FE)model of power spinning of thin-walled aluminum alloy shell with hoop inner rib was established under software ABAQUS.Key technologies were dealt with reasonably.The reliability of the FE model was verified theoretically and experimentally.The forming process was simulated and studied.The distribution of the thickness and stress,and the variations of spinning force were obtained.The workpiece springback was analyzed with ABAQUS/Standard.The results show that the FE model considering elastic deformation can not only be used to analyze the workpiece springback in the complex spinning process,but also serve as a significant guide to study the local deformation mechanism and choose the reasonable parameters.展开更多
Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order...Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.展开更多
扰流肋是涡轮叶片内腔强化对流冷却的核心结构。为实现复杂冷却涡轮叶片扰流肋的参数化建模,提出了扰流肋参数化建模方法。首先用隔板等距面和叶盆或叶背等距面修剪扰流肋实体,保证了扰流肋的深度均匀一致;其次提出了曲线识别算法,建立...扰流肋是涡轮叶片内腔强化对流冷却的核心结构。为实现复杂冷却涡轮叶片扰流肋的参数化建模,提出了扰流肋参数化建模方法。首先用隔板等距面和叶盆或叶背等距面修剪扰流肋实体,保证了扰流肋的深度均匀一致;其次提出了曲线识别算法,建立扰流肋与叶身内型的联系;然后通过设计参数到建模参数的转换提高了扰流肋建模的精度和建模效率;最后采用UG Open API工具开发了扰流肋参数化建模程序,并验证了所提方法的可行性。展开更多
基金supported by the National Nat-ural Science Foundation of China(Grant Nos.51775194 and 52090043).
文摘Hot flow forming(HFF)is a promising forming technology to manufacture thin-walled cylindrical part with longitudinal inner ribs(CPLIRs)made of magnesium(Mg)alloys,which has wide applications in the aerospace field.However,due to the thermo-mechanical coupling effect and the existence of stiffened structure,complex microstructure evolution and uneven microstructure occur easily at the cylindrical wall(CW)and inner rib(IR)of Mg alloy thin-walled CPLIRs during the HFF.In this paper,a modified cellular automaton(CA)model of Mg alloy considering the effects of deformation conditions on material parameters was developed using the artificial neural network(ANN)method.It is found that the ANN-modified CA model exhibits better predictability for the microstructure of hot deformation than the conventional CA model.Furthermore,the microstructure evolution of ZK61 alloy CPLIRs during the HFF was analyzed by coupling the modified CA model and finite element analysis(FEA).The results show that compared with the microstructure at the same layer of the IR,more refined grains and less sufficient DRX resulted from larger strain and strain rate occur at that of the CW;various differences of strain and strain rate in the wall-thickness exist between the CW and IR,which leads to the inhomogeneity of microstructure rising firstly and declining from the inside layer to outside layer;the obtained Hall-Petch relationship between the measured microhardness and predicted grain sizes at the CW and the IR indicates the reliability of the coupled FEA-CA simulation results.
基金Projects(50405039,50575186) supported by the National Natural Science Foundation of ChinaProject(50225518) supported by the National Natural Science Foundation of China for Distinguished Young ScholarsProject(2008AA04Z122) supported by the National High-tech Research and Development Program of China
文摘Material properties of blank have a great effect on power spinning process of aluminum alloy parts with transverse inner rib.By using finite element(FE) and Taguchi method,the effects and significance of five key material parameters,namely,anisotropic index in thickness direction,yield strength,hardening exponent,strengthening factor and elastic modulus on the formability of inner rib,tendency of wall fracture and degree of inhomogeneous deformation of finished spun parts were obtained.The achievements provide an important guide for selecting reasonable spinning material,and are very significant for the optimum design and precision control of power spinning process of parts with transverse inner rib.
基金Project(3236301154) supported by Postdoctoral Foundation of Heilongjiang Province, China
文摘Based on the process experiments, micrography analysis was dedicated to advancing the understanding of plastic flow of the metal in backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Micrography analysis reveals that severe plastic deformation leads to grain refinement, grain orientation and grain flow line of the spun part. Based on rigid-plastic finite element method, DEFORME3D finite element code was used to simulate and analyze multi-pass backward ball spinning of thin-walled tubular part with longitudinal inner ribs. Finite element simulation results involve the distributions of the strain, the shape variation of the inner ribs as well as the prediction of the spinning loading.
基金Projects(5040503950575186)supported by the National Natural Science Foundation of ChinaProject(50225518)supported by the National Science Foundation of China for Distinguished Young Scholars
文摘A 3D elasto-plastic finite element(FE)model of power spinning of thin-walled aluminum alloy shell with hoop inner rib was established under software ABAQUS.Key technologies were dealt with reasonably.The reliability of the FE model was verified theoretically and experimentally.The forming process was simulated and studied.The distribution of the thickness and stress,and the variations of spinning force were obtained.The workpiece springback was analyzed with ABAQUS/Standard.The results show that the FE model considering elastic deformation can not only be used to analyze the workpiece springback in the complex spinning process,but also serve as a significant guide to study the local deformation mechanism and choose the reasonable parameters.
文摘Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.
文摘扰流肋是涡轮叶片内腔强化对流冷却的核心结构。为实现复杂冷却涡轮叶片扰流肋的参数化建模,提出了扰流肋参数化建模方法。首先用隔板等距面和叶盆或叶背等距面修剪扰流肋实体,保证了扰流肋的深度均匀一致;其次提出了曲线识别算法,建立扰流肋与叶身内型的联系;然后通过设计参数到建模参数的转换提高了扰流肋建模的精度和建模效率;最后采用UG Open API工具开发了扰流肋参数化建模程序,并验证了所提方法的可行性。