对金属罐内壁质量检测进行研究,以Visual Studio 2010为开发平台研制了基于机器视觉的金属罐内壁缺陷检测系统,可实现对金属罐内壁缺陷的自动检测.针对金属罐内壁的特殊性,在图像采集时选择了合适的光源和相机;检测过程包括图像采集、...对金属罐内壁质量检测进行研究,以Visual Studio 2010为开发平台研制了基于机器视觉的金属罐内壁缺陷检测系统,可实现对金属罐内壁缺陷的自动检测.针对金属罐内壁的特殊性,在图像采集时选择了合适的光源和相机;检测过程包括图像采集、图像处理、检测区域定位及缺陷检测;通过图像处理算法分别对金属罐罐口、内壁和焊缝3部分进行检测;并用多线程技术对检测速度进行优化.实验表明:对于选用的金属罐,缺陷检测系统的检测速度可达到600个/min,能够满足生产线的高速度需求.展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
文摘对金属罐内壁质量检测进行研究,以Visual Studio 2010为开发平台研制了基于机器视觉的金属罐内壁缺陷检测系统,可实现对金属罐内壁缺陷的自动检测.针对金属罐内壁的特殊性,在图像采集时选择了合适的光源和相机;检测过程包括图像采集、图像处理、检测区域定位及缺陷检测;通过图像处理算法分别对金属罐罐口、内壁和焊缝3部分进行检测;并用多线程技术对检测速度进行优化.实验表明:对于选用的金属罐,缺陷检测系统的检测速度可达到600个/min,能够满足生产线的高速度需求.
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.