Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and ...Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and utilizes the more exact potential functions between central metal ion and the inner-sphere ligands.The parameters involved are determined via the spectroscopic and thermodynamic data.The predictions of the inner-sphere reorganization energies from those models agree well with the photoemission experimental results.展开更多
On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the i...On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the inner-sphere reorganization energy, values for diatomic molecular redox couples in gas phase electron transfer process have been calculated. Results agree well with the experimental data, and the effectiveness and importance of this method have been demonstrated for calculation of inner-sphere reorganization energy in gas phase electron transfer process.展开更多
A new ab-initio method of computing reorganization energy (RE) for the electron transfer (ET) reaction between M-H and M+-H system is presented. Values of RE from precise RE definition and the George-Griffith-Marcus (...A new ab-initio method of computing reorganization energy (RE) for the electron transfer (ET) reaction between M-H and M+-H system is presented. Values of RE from precise RE definition and the George-Griffith-Marcus (GGM) model were obtained and compared with the RE obtained from the experimental spectroscopic data. Results show that in the gaseous phase, ET reactions by the new method can give better values than classical GGM model.展开更多
Reorganization energy(RE)is closely related to the charge transport properties and is one of the important parameters for screening novel organic semiconductors(OSCs).With the rise of data-driven technology,accurate a...Reorganization energy(RE)is closely related to the charge transport properties and is one of the important parameters for screening novel organic semiconductors(OSCs).With the rise of data-driven technology,accurate and efficient machine learning(ML)models for high-throughput screening novel organic molecules play an important role in the boom of material science.Comparing different molecular descriptors and algorithms,we construct a reasonable algorithm framework with molecular graphs to describe the compositional structure,convolutional neural networks to extract material features,and subsequently embedded fully connected neural networks to establish the mapping between features and predicted properties.With our well-designed judicious training pattern about feature-guided stratified random sampling,we have obtained a high-precision and robust reorganization energy prediction model,which can be used as one of the important descriptors for rapid screening potential OSCs.The root-meansquare error(RMSE)and the squared Pearson correlation coefficient(R^(2))of this model are 2.6 me V and0.99,respectively.More importantly,we confirm and emphasize that training pattern plays a crucial role in constructing supreme ML models.We are calling for more attention to designing innovative judicious training patterns in addition to high-quality databases,efficient material feature engineering and algorithm framework construction.展开更多
Based on the capture force field potential model and the adiabatic invariant proposed by Bates, adopting improved average dipole orientation (IADO) theory, the force constants between transition metal ions and benzene...Based on the capture force field potential model and the adiabatic invariant proposed by Bates, adopting improved average dipole orientation (IADO) theory, the force constants between transition metal ions and benzene (bz) and also a series of inner-sphere reoganization energy (REin) were calculated. The reasons for the differences between theoretical predictions and experimental results were discussed.展开更多
Based on a simple improved model of reorganization phenomenon and ion-dipole fore. field potential, a new formalism of inner-spher reorganization energy is presented Calculation agrees well with experimental spectrosc...Based on a simple improved model of reorganization phenomenon and ion-dipole fore. field potential, a new formalism of inner-spher reorganization energy is presented Calculation agrees well with experimental spectroscopic scale data and photoemission experimental results.展开更多
A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielect...A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramoleeular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 k J/mol, in good agreement with experimental data. Koopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.展开更多
According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spe...According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spectral shift of the electronic absorption spectra is deduced. Furthermore, the lowest transition of p-nitroaniline (pNA) in water is investigated by time-dependent density functional theory method. In addition, the details of excited state properties of pNA are discussed. Using our novel expression of the spectral shift, the value of -0.99 eV is obtained for π→π^* transition in water, which is in good agreement with the available experimental result of -0.98 eV.展开更多
DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the groun...DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the ground state energy calculations and CAM-B3LYP functional for the excited state calculations.The discrepancy between the calculated and experimental energies is reduced by correlating them with a linear fit.The fitted energies of HOMO and LUMO are used to calculate the Voc of an OSC based on these donors and acceptor blend and compared with experimental values.Using the Scharber model the calculated PCE of the donor-acceptor molecules agree with the experiment.It has been found that fluorine substitution can be used to improve charge transport by reducing the electron and hole reorganization energies of the molecules.It is also found that the introduction of fluorine onto the donor pentathiophene unit of the donor molecule results in a change of polarity of the distributed charges in the molecule due to the high electronegativity of the fluorine atom.The quantum chemical potential(μ),chemical hardness(η)and electronegativity(χ),and electrostatic potential maps(EPMs)are also calculated to identify different charge distribution regions in all five molecules.展开更多
This work presents a thermodynamic method for treating nonequilibrium solvation. By imposing an extra electric field onto the nonequilibrium solvation system, a virtual constrained equilibrium state is prepared. In th...This work presents a thermodynamic method for treating nonequilibrium solvation. By imposing an extra electric field onto the nonequilibrium solvation system, a virtual constrained equilibrium state is prepared. In this way, the free energy difference between the real nonequilibrium state and the con-strained equilibrium one is simply the potential energy of the nonequilibrium polarization in the extra electronic field, according to thermodynamics. Further, new expressions of nonequilibrium solvation energy and solvent reorganization energy have been formulated. Analysis shows that the present formulations will give a value of reorganization energy about one half of the traditional Marcus theory in polar solvents, thus the explanation on why the traditional theory tends to overestimate this quantity has been found out. For the purpose of numerical determination of solvent reorganization energy, we have modified Gamess program on the basis of dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy have been found to be in good agreement with the experimental fittings.展开更多
A novel two-dimensional A-D-A acceptor named as CH8 with four electron-withdrawing end units has been successfully designed and synthesized.The enlarged conjugation in two directions renders CH8 exhibit an extremely l...A novel two-dimensional A-D-A acceptor named as CH8 with four electron-withdrawing end units has been successfully designed and synthesized.The enlarged conjugation in two directions renders CH8 exhibit an extremely low electron reorganization energy of 98 meV,which makes CH8 a potential candidate for outstanding organic semiconductor material.When blended with PM6,a considerate power conversion efficiency of 9.37%along with a high open-circuit voltage(V_(oc))0.889 V and low energy loss(E_(loss))below 0.6 eV is achieved.These results indicate that the two-dimensional A-D-A molecule with four electron-withdrawing end units is an effective molecular design strategy to achieve lower voltage loss and also possible high performance for organic photovoltaics if ideal morphology could be achieved.展开更多
On the basis of the electromagnetic field theory and the spherical cavity approximation, the expressions ofGibbs free energies under equilibrium and non-equilibrium solvation conditions are obtained by solving the ele...On the basis of the electromagnetic field theory and the spherical cavity approximation, the expressions ofGibbs free energies under equilibrium and non-equilibrium solvation conditions are obtained by solving the electrostatic potential equations with boundary conditions. The surface charges produced by the orientational polarization of equi-librium solvation are taken fixed in the case of non-equilibrium situation, for the slow-response of the orientational polarization to electron transfer of the solvent molecules. Anew expression of solvent reorganization energy has beenobtained and this method is applied to the electron transfer systems, NO+/NO, NO2+/NO2, and NO2+/NO. The solvent reorganization energies have been evaluated.展开更多
ELECTRON transfer (ET) reaction is concerned with many important processes in chemistry and biology, and has become an active research field in recent years. According to Marcus’s theory, the ET rate can be expressed...ELECTRON transfer (ET) reaction is concerned with many important processes in chemistry and biology, and has become an active research field in recent years. According to Marcus’s theory, the ET rate can be expressed as the Fermi’s golden rule:展开更多
The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used...The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used to calculate the internal reorganization energy λi of self-exchange electron transfer (ET) reactions. The calculated λi results of DDQ/DDQ-. by AM1 and B3LYP/ 6-31G(d), 6-31+G(d) methods are close to each other and consistent with the reported values; while those from Har-tree-Fock methods are too large because of not consideringthe effect of electron correlation. The structure and ET behavior of MQ0 /MQ0- couple were studied by AM1 and DFT (B3LYP/6-31G(d), 6-31+ G(d, p)) methods, and those of MQ0 /MQn-(n=1-7) were studied by AM1 method for the first time. The results indicate that the values of the heat of formation of MQn increases with the increasing of the length of the isoamylene substituent chains. It also shows that the length of substituent has little effect on the bond lengths,展开更多
Concerning the theoretical estimation of internal reorganization energy contributed by the tortional motion between biphenyl and biphenyl anion radical, direct calculation of self-exchange electron transfer reaction w...Concerning the theoretical estimation of internal reorganization energy contributed by the tortional motion between biphenyl and biphenyl anion radical, direct calculation of self-exchange electron transfer reaction was investigated. With the introduction of a proper average bond length and angle parameters <bond Bp>, a multiple step relaxation Nelson method was developed to deal with the torsional reorganization energy. Based on the above model, an estimation of pure torsional reorganization energy λ t,p with an approximation of λ t,1 was achieved. The results of 0.140 and 0.125 eV of torsional reorganization energy for a cross-reaction at the levels of 4-31G and HP/DZP, respectively, are in good agreement with the value of 0.13 eV obtained by Miller et al. from the rate measurements. This implies the efficiency and validity of our method to estimate the reorganization energy contributed by pure torsional motion of Bp.展开更多
In this work, the authors give detailed deductions and develop the single-sphere model of solvent reorganization energy in electron transfer with point dipole approximation. At the level of DFT/6- 31++G**, the electro...In this work, the authors give detailed deductions and develop the single-sphere model of solvent reorganization energy in electron transfer with point dipole approximation. At the level of DFT/6- 31++G**, the electron transfer between 7,7,8,8-tet-racyanoquinodimethane and its anion has been investigated. Using the novel single-sphere model, the authors evaluate the solvent reorganization energy of this system, and the computational result proves rational in comparison with the experimental estimations.展开更多
基金Supported by the Natural Science Foundation of Shandong Province
文摘Reported here are several new calculation methods for the inner-sphere reorganization energy of hydrated metal ions involved in electron transfer processes.It is based on the self-exchange model of reorganization and utilizes the more exact potential functions between central metal ion and the inner-sphere ligands.The parameters involved are determined via the spectroscopic and thermodynamic data.The predictions of the inner-sphere reorganization energies from those models agree well with the photoemission experimental results.
文摘On the basis of the-improved self-exchange model of reorganization phenomenon and accurate potential functions from ab initio calculation at HFSCF 6-31G* and DZP levels a new calculation method was,presented for the inner-sphere reorganization energy, values for diatomic molecular redox couples in gas phase electron transfer process have been calculated. Results agree well with the experimental data, and the effectiveness and importance of this method have been demonstrated for calculation of inner-sphere reorganization energy in gas phase electron transfer process.
文摘A new ab-initio method of computing reorganization energy (RE) for the electron transfer (ET) reaction between M-H and M+-H system is presented. Values of RE from precise RE definition and the George-Griffith-Marcus (GGM) model were obtained and compared with the RE obtained from the experimental spectroscopic data. Results show that in the gaseous phase, ET reactions by the new method can give better values than classical GGM model.
基金financially supported by the Ministry of Science and Technology of China (2017YFA0204503 and 2018YFA0703200)the National Natural Science Foundation of China (52121002,U21A6002 and 22003046)+1 种基金the Tianjin Natural Science Foundation (20JCJQJC00300)“A Multi-Scale and High-Efficiency Computing Platform for Advanced Functional Materials”program,funded by Haihe Laboratory in Tianjin (22HHXCJC00007)。
文摘Reorganization energy(RE)is closely related to the charge transport properties and is one of the important parameters for screening novel organic semiconductors(OSCs).With the rise of data-driven technology,accurate and efficient machine learning(ML)models for high-throughput screening novel organic molecules play an important role in the boom of material science.Comparing different molecular descriptors and algorithms,we construct a reasonable algorithm framework with molecular graphs to describe the compositional structure,convolutional neural networks to extract material features,and subsequently embedded fully connected neural networks to establish the mapping between features and predicted properties.With our well-designed judicious training pattern about feature-guided stratified random sampling,we have obtained a high-precision and robust reorganization energy prediction model,which can be used as one of the important descriptors for rapid screening potential OSCs.The root-meansquare error(RMSE)and the squared Pearson correlation coefficient(R^(2))of this model are 2.6 me V and0.99,respectively.More importantly,we confirm and emphasize that training pattern plays a crucial role in constructing supreme ML models.We are calling for more attention to designing innovative judicious training patterns in addition to high-quality databases,efficient material feature engineering and algorithm framework construction.
文摘Based on the capture force field potential model and the adiabatic invariant proposed by Bates, adopting improved average dipole orientation (IADO) theory, the force constants between transition metal ions and benzene (bz) and also a series of inner-sphere reoganization energy (REin) were calculated. The reasons for the differences between theoretical predictions and experimental results were discussed.
文摘Based on a simple improved model of reorganization phenomenon and ion-dipole fore. field potential, a new formalism of inner-spher reorganization energy is presented Calculation agrees well with experimental spectroscopic scale data and photoemission experimental results.
文摘A novel algorithm was designed and implemented to realize the numerical calculation of the solvent reorganization energy for electron transfer reactions, on the basis of nonequilibrium solvation theory and the dielectric polarizable continuum model. Applying the procedure to the well-investigated intramoleeular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy were determined to be around 60 k J/mol, in good agreement with experimental data. Koopman's theorem was adopted for the calculation of the electron transfer coupling element, associated with the linear reaction coordinate approximation. The values for this quantity obtained are acceptable when compared with experimental results.
基金ACKNOWLEDGMENTS This work was supported Science Foundation of China by the National Natural (No.91016002).
文摘According to the nonequilibrium solvation theory studies, a constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation energy, and a reasonable expression of the spectral shift of the electronic absorption spectra is deduced. Furthermore, the lowest transition of p-nitroaniline (pNA) in water is investigated by time-dependent density functional theory method. In addition, the details of excited state properties of pNA are discussed. Using our novel expression of the spectral shift, the value of -0.99 eV is obtained for π→π^* transition in water, which is in good agreement with the available experimental result of -0.98 eV.
文摘DFT and TD-DFT calculations of HOMO and LUMO energies and photovoltaic properties are carried out on four selected pentathiophene donor and one IDIC-4F acceptor molecules using B3LYP and PBE0 functionals for the ground state energy calculations and CAM-B3LYP functional for the excited state calculations.The discrepancy between the calculated and experimental energies is reduced by correlating them with a linear fit.The fitted energies of HOMO and LUMO are used to calculate the Voc of an OSC based on these donors and acceptor blend and compared with experimental values.Using the Scharber model the calculated PCE of the donor-acceptor molecules agree with the experiment.It has been found that fluorine substitution can be used to improve charge transport by reducing the electron and hole reorganization energies of the molecules.It is also found that the introduction of fluorine onto the donor pentathiophene unit of the donor molecule results in a change of polarity of the distributed charges in the molecule due to the high electronegativity of the fluorine atom.The quantum chemical potential(μ),chemical hardness(η)and electronegativity(χ),and electrostatic potential maps(EPMs)are also calculated to identify different charge distribution regions in all five molecules.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20533070 and 20625311)
文摘This work presents a thermodynamic method for treating nonequilibrium solvation. By imposing an extra electric field onto the nonequilibrium solvation system, a virtual constrained equilibrium state is prepared. In this way, the free energy difference between the real nonequilibrium state and the con-strained equilibrium one is simply the potential energy of the nonequilibrium polarization in the extra electronic field, according to thermodynamics. Further, new expressions of nonequilibrium solvation energy and solvent reorganization energy have been formulated. Analysis shows that the present formulations will give a value of reorganization energy about one half of the traditional Marcus theory in polar solvents, thus the explanation on why the traditional theory tends to overestimate this quantity has been found out. For the purpose of numerical determination of solvent reorganization energy, we have modified Gamess program on the basis of dielectric polarizable continuum model. Applying the procedure to the well-investigated intramolecular electron transfer in biphenyl-androstane-naphthyl and biphenyl-androstane-phenanthryl systems, the numerical results of solvent reorganization energy have been found to be in good agreement with the experimental fittings.
基金financially supported by the National Natural Science Foundation of China (Nos. 21935007, 52025033 and 51873089)Ministry of Science and Technology (No. 2019YFA0705900) of China,Tianjin city (No. 20JCZDJC00740)111 Project (No. B12015)
文摘A novel two-dimensional A-D-A acceptor named as CH8 with four electron-withdrawing end units has been successfully designed and synthesized.The enlarged conjugation in two directions renders CH8 exhibit an extremely low electron reorganization energy of 98 meV,which makes CH8 a potential candidate for outstanding organic semiconductor material.When blended with PM6,a considerate power conversion efficiency of 9.37%along with a high open-circuit voltage(V_(oc))0.889 V and low energy loss(E_(loss))below 0.6 eV is achieved.These results indicate that the two-dimensional A-D-A molecule with four electron-withdrawing end units is an effective molecular design strategy to achieve lower voltage loss and also possible high performance for organic photovoltaics if ideal morphology could be achieved.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 39970183).
文摘On the basis of the electromagnetic field theory and the spherical cavity approximation, the expressions ofGibbs free energies under equilibrium and non-equilibrium solvation conditions are obtained by solving the electrostatic potential equations with boundary conditions. The surface charges produced by the orientational polarization of equi-librium solvation are taken fixed in the case of non-equilibrium situation, for the slow-response of the orientational polarization to electron transfer of the solvent molecules. Anew expression of solvent reorganization energy has beenobtained and this method is applied to the electron transfer systems, NO+/NO, NO2+/NO2, and NO2+/NO. The solvent reorganization energies have been evaluated.
文摘ELECTRON transfer (ET) reaction is concerned with many important processes in chemistry and biology, and has become an active research field in recent years. According to Marcus’s theory, the ET rate can be expressed as the Fermi’s golden rule:
基金This work was supportedby the National Natural Science Foundation of China (Grant Nos. 29733100 and 39890390) and the State Key Basic Research and Development Plan (Grant No. G1998010100).
文摘The semiempirical AMI method, ah initio (HF/3-21G, 6-31G, 6-31G(d), 6-31+G(d)) and DFT (B3LYP/6-31G(d), 6-31+G(d)) methods were used to optimize the geometry of DDQ and its anion radical DDQ-. Nelsen’s model was used to calculate the internal reorganization energy λi of self-exchange electron transfer (ET) reactions. The calculated λi results of DDQ/DDQ-. by AM1 and B3LYP/ 6-31G(d), 6-31+G(d) methods are close to each other and consistent with the reported values; while those from Har-tree-Fock methods are too large because of not consideringthe effect of electron correlation. The structure and ET behavior of MQ0 /MQ0- couple were studied by AM1 and DFT (B3LYP/6-31G(d), 6-31+ G(d, p)) methods, and those of MQ0 /MQn-(n=1-7) were studied by AM1 method for the first time. The results indicate that the values of the heat of formation of MQn increases with the increasing of the length of the isoamylene substituent chains. It also shows that the length of substituent has little effect on the bond lengths,
文摘Concerning the theoretical estimation of internal reorganization energy contributed by the tortional motion between biphenyl and biphenyl anion radical, direct calculation of self-exchange electron transfer reaction was investigated. With the introduction of a proper average bond length and angle parameters <bond Bp>, a multiple step relaxation Nelson method was developed to deal with the torsional reorganization energy. Based on the above model, an estimation of pure torsional reorganization energy λ t,p with an approximation of λ t,1 was achieved. The results of 0.140 and 0.125 eV of torsional reorganization energy for a cross-reaction at the levels of 4-31G and HP/DZP, respectively, are in good agreement with the value of 0.13 eV obtained by Miller et al. from the rate measurements. This implies the efficiency and validity of our method to estimate the reorganization energy contributed by pure torsional motion of Bp.
基金supported by the National Natural Science Foundation of China(Grant Nos.20473054 and 20572073).
文摘In this work, the authors give detailed deductions and develop the single-sphere model of solvent reorganization energy in electron transfer with point dipole approximation. At the level of DFT/6- 31++G**, the electron transfer between 7,7,8,8-tet-racyanoquinodimethane and its anion has been investigated. Using the novel single-sphere model, the authors evaluate the solvent reorganization energy of this system, and the computational result proves rational in comparison with the experimental estimations.