Glyphosate is an important organophosphonate herbicide used to eliminate grasses and herbaceous plants in many vegetation management situations.Its extensive use is causing environmental pollution,and consequently,the...Glyphosate is an important organophosphonate herbicide used to eliminate grasses and herbaceous plants in many vegetation management situations.Its extensive use is causing environmental pollution,and consequently,there is a need to remove it from the environment using an eco-friendly and cost-effective method.As a step to address this problem,a novel bacterial strain Comamonas odontotermitis F2,capable to utilize glyphosate as a carbon(C)and/or phosphorus(P)source,was isolated from a glyphostate-contaminated field soil in Australia and characterized.Response surface methodology(RSM)employing a 2^3 full factorial central composite design was used to optimize glyphosate degradation by C.odontotermitis P2 under various culture conditions.The strain C.odontotermitis P2 was proficient in degrading 1.5 g L^-1 glyphosate completely within 104 h.The optimal conditions for the degradation of glyphosate were found to be pH 7.4,29.9℃,and an inoculum density of 0.54 g L^-1,resulting in a maximum degradation of 90%.Sequencing of glyphosate oxidoreductase(GOX)and C-P lyase(phnJ)genes from C.odontotermitis P2 revealed 999c and 93%identities to already reported bacterial GOX and phnJ genes,respectively.The presence of these two genes in C.odontotermitis indicates its potential to degrade glyphosate through GOX and C-P lyase metabolic pathways.This study demonstrates the potential of C.odontotermitis P2 for efficient degradation of glyphosate,which can be exploited for remediation of glyphosate.展开更多
基金We acknowledge Higher Education Commission (HEC), Islamabad, Pakistan, for providing financial support through International Research Support Initiative Program (IRSIP) to conduct this research at University of Sydney, Australia.
文摘Glyphosate is an important organophosphonate herbicide used to eliminate grasses and herbaceous plants in many vegetation management situations.Its extensive use is causing environmental pollution,and consequently,there is a need to remove it from the environment using an eco-friendly and cost-effective method.As a step to address this problem,a novel bacterial strain Comamonas odontotermitis F2,capable to utilize glyphosate as a carbon(C)and/or phosphorus(P)source,was isolated from a glyphostate-contaminated field soil in Australia and characterized.Response surface methodology(RSM)employing a 2^3 full factorial central composite design was used to optimize glyphosate degradation by C.odontotermitis P2 under various culture conditions.The strain C.odontotermitis P2 was proficient in degrading 1.5 g L^-1 glyphosate completely within 104 h.The optimal conditions for the degradation of glyphosate were found to be pH 7.4,29.9℃,and an inoculum density of 0.54 g L^-1,resulting in a maximum degradation of 90%.Sequencing of glyphosate oxidoreductase(GOX)and C-P lyase(phnJ)genes from C.odontotermitis P2 revealed 999c and 93%identities to already reported bacterial GOX and phnJ genes,respectively.The presence of these two genes in C.odontotermitis indicates its potential to degrade glyphosate through GOX and C-P lyase metabolic pathways.This study demonstrates the potential of C.odontotermitis P2 for efficient degradation of glyphosate,which can be exploited for remediation of glyphosate.