A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminesce...A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).展开更多
The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below ...The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.展开更多
Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh...Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.展开更多
基金supported by the National Natural Science Fund of China(Nos.90606011 and 50472038)Ph.D.Program Foundation of Ministry of Education of China(No.20070255012)+3 种基金Shanghai Leading Academic Discipline Project(No.B603)the Program of Introducing Talents of Discipline to Universities(No.111-2- 04)Open Project of the State Key Laboratory of Crystal Materials(No.KF0809)Youth Scientific Research Fund of Anhui University and the Excellent Youth Fund in University of Anhui Province(No.2008jq1020)
文摘A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).
文摘The organic/inorganic nanocomposites polymer electrolytes were designed and synthesized. The organic/inorganic nanocomposites membrane materials and their lithium salt complexes have been found thermally stable below 200 °C. The conductivity of the organic/inorganic nanocomposites polymer electrolytes prepared at room temperature was at magnitude range of 10(?6) S/cm.
文摘Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.