Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase chan...Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.展开更多
To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environm...To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.展开更多
The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of...The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.展开更多
Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with hi...Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.展开更多
Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce...Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.展开更多
Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.How...Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.展开更多
Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing ...Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.展开更多
With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it i...With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers.展开更多
Non-carbon inorganic fullerene-like (IF) nanoscale materials have recently attracted intense interest due to their nested hollow and nanotube structures. In this letter, IF-WS2 nanoparticles prepared by solid-gas rea...Non-carbon inorganic fullerene-like (IF) nanoscale materials have recently attracted intense interest due to their nested hollow and nanotube structures. In this letter, IF-WS2 nanoparticles prepared by solid-gas reaction were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results show that the IF-WS2 nanoparticles have a nested hollow closed spherical structure with diameter of 100-150 nm.展开更多
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el...Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs.展开更多
Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becomi...Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.展开更多
Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out...Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out for their prominent merits,such as quantum confinement effects,high photoluminescence quantum yield,and defect-tolerant structures.Additionally,ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices.This review presents the state-of-the-art research progress on inorganic perovskite QDs,emphasizing their electronic applications.In detail,the physical properties of inorganic perovskite QDs will be introduced first,followed by a discussion of synthesis methods and growth control.Afterwards,the emerging applications of inorganic perovskite QDs in electronics,including transistors and memories,will be presented.Finally,this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.展开更多
The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sens...The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sensor,based on separate designs for sensing,memory,and processing units,limits its integration density.Moreover,redundant signal communication significantly increases energy consumption.Current neuromorphic devices integrating sensing and signal processing show promise in various computer vision applications,but there is still a need for frame-based imaging with good compatibility.In this study,we developed a dual-mode image sensor based on a high-density all-inorganic perovskite nanowire array.The device can switch between frame-based standard imaging mode and neuromorphic imaging mode by applying different biases.This unique bias-dependent photo response is based on a well-designed energy band diagram.The biomimetic alignment of nanowires ensures the potential for high-resolution imaging.To further demonstrate the imaging ability,we conducted pattern reconstruction in both modes with a 10×10 crossbar device.This study introduces a novel image sensor with high compatibility and efficiency,suitable for various applications including computer vision,surveillance,and robotics.展开更多
All inorganic CsPbBr_(3) quantum dots(QDs)are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield(PLQY)and defect tolerance.However,the poor stability and de...All inorganic CsPbBr_(3) quantum dots(QDs)are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield(PLQY)and defect tolerance.However,the poor stability and degraded luminescent performance may impede their further commercialization because of the separation of conventional ligands from the QDs surfaces.Recently,Zang replaced the regular oleic acid with 2-hexyl-decanoic acid(DA),which possesses higher binding energy on the QDs surfaces,to act as ligands of QDs,exhibiting PLQY of 96%and excellent stabilities against ethanol and water.WLEDs with DA-modified CsPbBr_(3) QDs achieved improved thermal stability,a color rendering index of 93,a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K,implying their prominent applications in solid-state lighting and displays.展开更多
For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is ch...For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.展开更多
Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its ...Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its practical application.After developing carboxylated cellulose nanocrystals(CNC-COO^(-))as immobile dopants for PPy to improve its cycling stability,we investigated the effect of different commonly used salts(KCl,NaCl,KBr,and NaClO_(4))as dopants during electrode fabrication by electropolymerization.The film’s capacitance increased from 160.6 to 183.4 F g^(-1)after adding a combination of KCl and NaClO_(4) into the electrodeposition electrolyte.More importantly,the porous and interconnected PPy/CNC-COO^(-)-Cl-(Cl O_(4)^(-))_0.5 electrode film exhibited an excellent capacitance of 125.0 F g^(-1)(0.78 F cm^(-2))at a high current density of 2.0 Ag^(-1)(20 m A cm^(-2),allowing charging in less than 1 min),increasing almost 204%over PPy/CNC-COO-films.A symmetric PPy/CNC-COO^(-)-Cl-(ClO_(4)^(-))_0.5 supercapacitor retained its full capacitance after 5000 cycles,and displayed a high energy density of 5.2 Wh kg^(-1)at a power density of 25.4 W kg^(-1)(34.5μWh cm^(-2) at 1752.3μW cm^(-2)).These results reveal that the porous structure formed by doping with CNC-COO-and inorganic salts opens up more active reaction areas to store charges in PPy-based films as the stiff and ribbon-like CNC-COO-as permanent dopants improve the strength and stability of PPy-based films.Our demonstration provides a simple and practical way to deposit PPy based supercapacitors with high capacitance,fast charging,and excellent cycling stability.展开更多
After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are recei...After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.展开更多
The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By vi...The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.展开更多
Facing the poor environmental stability of traditional methylammonium or formamidinium-based lead halide per-ovskites,scientists turn their attention to inorganic lead hal-ide perovskites(ILHPs)with narrow bandgaps,ex...Facing the poor environmental stability of traditional methylammonium or formamidinium-based lead halide per-ovskites,scientists turn their attention to inorganic lead hal-ide perovskites(ILHPs)with narrow bandgaps,excellent thermal stability and reduced ion migration compared to their organic/inorganic counterparts[1−4].Up to now,the PCEs for ILHP solar cells exceed 21%[5].Especially,the preferred black ILHP(e.g.CsPbI3)with the smallest bandgap of~1.7 eV and single-halide composition for avoiding phase separation is crucial for high-performance single-junction solar cells and can be applied in tandem devices as the top cells[6,7].However,small Cs+(167 pm)in CsPbI3 with a tolerance factor close to 0.8 is unsuitable for the 3D PbI3-framework[8].The mis-matched size of cations will induce lattice strain and the per-ovskite spontaneously transforms to undesired non-photoact-ive yellow phase(δ-phase,like NH4CdCl3)(Fig.1(a))[9,10].There-fore,improving lattice symmetry and reducing lattice strain are the strategies for inhibiting the phase transition of ILHPs.展开更多
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0207400)the National Natural Science Foundation of China(Grant No.U22A20168 and 52174225)。
文摘Developing technologies that can be applied simultaneously in battery thermal management(BTM)and thermal runaway(TR)mitigation is significant to improving the safety of lithium-ion battery systems.Inorganic phase change material(PCM)with nonflammability has the potential to achieve this dual function.This study proposed an encapsulated inorganic phase change material(EPCM)with a heat transfer enhancement for battery systems,where Na_(2)HPO_(4)·12H_(2)O was used as the core PCM encapsulated by silica and the additive of carbon nanotube(CNT)was applied to enhance the thermal conductivity.The microstructure and thermal properties of the EPCM/CNT were analyzed by a series of characterization tests.Two different incorporating methods of CNT were compared and the proper CNT adding amount was also studied.After preparation,the battery thermal management performance and TR propagation mitigation effects of EPCM/CNT were further investigated on the battery modules.The experimental results of thermal management tests showed that EPCM/CNT not only slowed down the temperature rising of the module but also improved the temperature uniformity during normal operation.The peak battery temperature decreased from 76℃to 61.2℃at 2 C discharge rate and the temperature difference was controlled below 3℃.Moreover,the results of TR propagation tests demonstrated that nonflammable EPCM/CNT with good heat absorption could work as a TR barrier,which exhibited effective mitigation on TR and TR propagation.The trigger time of three cells was successfully delayed by 129,474 and 551 s,respectively and the propagation intervals were greatly extended as well.
基金Supported by the National Natural Science Foundation of China(No.42077335)。
文摘To effectively remove n-propylbenzene(n-PBZ)and isopropylbenzene(i-PBZ)leaked into seawater using Rhinomonas reticulata S6A(a newly isolated marine microalga),the effects of three inorganic nutrients and four environmental factors on their degradation were determined after 7 d of inoculation.Results show that NaNO_(3) at 300 mg/L caused a higher removal efficiency of both n-PBZ and i-PBZ(44.79%and 39.26%),while for NaH_(2) PO_(4)·H_(2) O,greater removal rates of two PBZs(47.30%and 42.23%)were achieved at 30 and 20 mg/L,respectively.NaHCO_(3) supplementation(500-750 mg/L)resulted in a large reduction(43.67%-45.04%)in i-PBZ concentration.The change in seawater pH(from 6 to 9)did not affect the elimination of n-PBZ and i-PBZ.The most suitable salinity and temperature were 30 and 25-30℃,respectively,leading to the PBZs removal of~40%.Light intensity exhibited significant influence on elimination of PBZs,and the maximum removal efficiencies of 56.07%(n-PBZ)and 55.00%(i-PBZ)were recorded under 200 and 600μmol/(m^(2)·s),respectively.In addition,the microalga could still remove PBZs when it failed to grow well due to darkness,strong light,low temperature,or low salinity,which might mean that good growth of alga is not always a necessary condition for PBZs removal.Therefore,attention should be paid to the suitability of nutrient levels and environmental conditions(excluding pH)in seawater when using microalgae for bioremediating PBZs-contaminated seawater.
基金This work was supported by the National Natural Science Foundation of China(62104136,22179051)the National Key Research and Development Program of China(2021YFE0111000)+3 种基金Project of Shandong Province Higher Educational Young Innovative Team(2022KJ218)China Postdoctoral Science Foundation(2023M732104)Qingdao Postdoctoral Funding Program(QDBSH20220201002)Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202303032).
文摘The buried interface in the perovskite solar cell(PSC)has been regarded as a breakthrough to boost the power conversion efficiency and stability.However,a comprehensive manipulation of the buried interface in terms of the transport layer,buried interlayer,and perovskite layer has been largely overlooked.Herein,we propose the use of a volatile heterocyclic compound called 2-thiopheneacetic acid(TPA)as a pre-buried additive in the buried interface to achieve cross-layer all-interface defect passivation through an in situ bottom-up infiltration diffusion strategy.TPA not only suppresses the serious interfacial nonradiative recombination losses by precisely healing the interfacial and underlying defects but also effectively enhances the quality of perovskite film and releases the residual strain of perovskite film.Owing to this versatility,TPA-tailored CsPbBr3 PSCs deliver a record efficiency of 11.23% with enhanced long-term stability.This breakthrough in manipulating the buried interface using TPA opens new avenues for further improving the performance and reliability of PSC.
基金financially supported by the Sichuan Science and Technology Program (2023YFH0086, 2023YFH0085, 2023YFH0087 and 2023NSFSC0990)the State Key Laboratory of Polymer Materials Engineering (sklpme2022-3-02 and sklpme2023-2-11)the Tibet Foreign Experts Program (2022wz002)
文摘Semitransparent organic photovoltaics(STOPVs)have gained wide attention owing to their promising applications in building-integrated photovoltaics,agrivoltaics,and floating photovoltaics.Organic semiconductors with high charge carrier mobility usually have planar and conjugated structures,thereby showing strong absorption in visible region.In this work,a new concept of incorporating transparent inorganic semiconductors is proposed for high-performance STOPVs.Copper(I)thiocyanate(CuSCN)is a visible-transparent inorganic semiconductor with an ionization potential of 5.45 eV and high hole mobility.The transparency of CuSCN benefits high average visible transmittance(AVT)of STOPVs.The energy levels of CuSCN as donor match those of near-infrared small molecule acceptor BTP-eC9,and the formed heterojunction exhibits an ability of exciton dissociation.High mobility of CuSCN contributes to a more favorable charge transport channel and suppresses charge recombination.The control STOPVs based on PM6/BTP-eC9 exhibit an AVT of 19.0%with a power conversion efficiency(PCE)of 12.7%.Partial replacement of PM6 with CuSCN leads to a 63%increase in transmittance,resulting in a higher AVT of 30.9%and a comparable PCE of 10.8%.
基金Qingdao Postdoctoral Funding Program,Grant/Award Number:QDBSH20220201002National Key Research and Development Program of China,Grant/Award Number:2021YFE0111000+1 种基金Project of Shandong Province Higher Educational Young Innovative Team,Grant/Award Number:2022KJ218National Natural Science Foundation of China,Grant/Award Numbers:62104136,22179051,22109053。
文摘Suppressing nonradiative recombination and releasing residual strain areprerequisites to improving the efficiency and stability of perovskite solar cells(PSCs).Here,long-chain polyacrylic acid(PAA)is used to reinforce SnO_(2)film and passivate SnO_(2)defects,forming a structure similar to“reinforcedconcrete”with high tensile strength and fewer microcracks.Simultaneously,PAA is also introduced to the SnO_(2)/perovskite interface as a“buffer spring”torelease residual strain,which also acts as a“dual-side passivation interlayer”to passivate the oxygen vacancies of SnO_(2)and Pb dangling bonds in halideperovskites.As a result,the best inorganic CsPbBr_(3)PSC achieves a championpower conversion efficiency of 10.83%with an ultrahigh open-circuit voltageof 1.674 V.The unencapsulated PSC shows excellent stability under 80%relative humidity and 80℃over 120 days.
基金supported by the National Natural Science Foundation of China(Nos.52275334,52205361,51075163,and 50575085).
文摘Inorganic binder used in casting process has the advantages of low odor,labor-friendly conditions,and relatively low cost,which is one of the main development directions for casting molding materials in the future.However,compared to organic binders(such as resin binders),inorganic binders exhibit lower bonding strength and are more sensitive to environmental humidity.This sensitivity poses challenges,particularly in the reclamation of used sand,thus limiting their broader application.In this paper,the research and application status of inorganic binders(mainly silicate inorganic binders)and their curing methods are summarized.In addition,the research and application of phosphate inorganic binders and 3D printing inorganic binders that are being developed are introduced.Meanwhile,a detailed comparative analysis is conducted on the challenging issue of“reclamation for used sand”in the application of inorganic binders.Finally,the development direction of inorganic binders is clarified.
基金Supported by 2020 Teaching Reform Research Project of Pingdingshan University(2020-JY05)School-level Ideological and Political Demonstration Course of Pingdingshan University in 2023-Ecological Engineering+1 种基金Science and Technology Research Project of Henan Provincial Department of Science and Technology(212102110189)High-level Talent Start-up Fund Project of Pingdingshan University(PXY-BSQD-202001).
文摘Integrating ideological and political theories teaching into the whole process of classroom teaching construction is a new requirement for implementing the fundamental task of cultivating people by virtue and playing the role of collaborative education.In order to realize the seamless integration of inorganic and analytical chemistry courses and ideological and political education,this paper summarizes the current situation of ideological and political research on inorganic and analytical chemistry courses in three major databases in China(VIP,CNKI and Wanfang),and sorts out the knowledge points,ideological and political elements and educational goals according to the content of the course chapters,to provide a basic guarantee for the ideological and political education construction of the course.
文摘With the progress of science and technology,China has gradually attached importance to research and exploration in chemistry,and the achievements in exploring mechanochemistry are also quite significant.Therefore,it is necessary to study and explore mechanochemistry.This article mainly discusses the application of mechanochemistry in powder and some silicate materials,as well as in special ceramics,and provides a brief introduction to provide reference for relevant researchers.
基金This work was supported by the National Natural Science Foundation of China (50171063 20171039 20003009) the Zhejiang Provincial Natural Science Foundation of China (501074,200053) the Israeli Ministry of Science (Tashtiot) and the Israel Scie
文摘Non-carbon inorganic fullerene-like (IF) nanoscale materials have recently attracted intense interest due to their nested hollow and nanotube structures. In this letter, IF-WS2 nanoparticles prepared by solid-gas reaction were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results show that the IF-WS2 nanoparticles have a nested hollow closed spherical structure with diameter of 100-150 nm.
基金the National Natural Science Foundation of China(Nos.22279070,U21A20170 and 22175106)the Ministry of Science and Technology of China(Nos.2019YFA0705703,2021YFB2501900 and 2019YFE0100200)+1 种基金the Tsinghua University Initiative Scientific Research Program(20223080001)the Tsinghua-Foshan Innovation Special Fund(2021THFS0216)。
文摘Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs.
基金the Haihe Laboratory of Sustainable Chemical Transformations for financial support。
文摘Water can be used as oxidant in conjunction with metal particles to form metal-water propellant to increase the energy of propellant.For this application,water needs to be stored in form of solid and capable of becoming liquid when use.Stable and thixotropic hydrogel has good potential as water-retaining material and oxidant of metal-based propellant.In this study,we prepared organic/inorganic composite hydrogels by combining inorganic gellants hectorite and fumed silica with organic gellant agarose,respectively.The total content of the gellants can be reduced to less than 2%by adding agarose.The influence of agarose on water content,phase transition temperature,centrifugal stability and other basic physical properties of composite hydrogels were discussed.The results show that the composite hydrogels have better thixotropy and stability than pure inorganic hydrogels,and the gel-sol transformation can be realized by applying shear force or heating to the phase transition temperature.The composite hydrogels have good shear thinning ability and improved mechanical stability.Fumed silica/agarose hydrogels have better physical stability,while the thixotropy and shear thinning ability of hectorite/agarose hydrogels are better.
基金The authors thank the support from the Australian Research Council(DP190103316)UNSW SHARP Project(RG163043).
文摘Metal halide perovskites have generated significant attention in recent years because of their extraordinary physical properties and photovoltaic performance.Among these,inorganic perovskite quantum dots(QDs)stand out for their prominent merits,such as quantum confinement effects,high photoluminescence quantum yield,and defect-tolerant structures.Additionally,ligand engineering and an all-inorganic composition lead to a robust platform for ambient-stable QD devices.This review presents the state-of-the-art research progress on inorganic perovskite QDs,emphasizing their electronic applications.In detail,the physical properties of inorganic perovskite QDs will be introduced first,followed by a discussion of synthesis methods and growth control.Afterwards,the emerging applications of inorganic perovskite QDs in electronics,including transistors and memories,will be presented.Finally,this review will provide an outlook on potential strategies for advancing inorganic perovskite QD technologies.
基金supported by the Science and Technology Plan of Shenzhen(JCYJ20170818114107730,JCYJ20180306174923335)The General Research Fund(projects 16205321,16214619)from the Hong Kong Research Grant Council,Innovation Technology Fund(GHP/014/19SZ)+2 种基金Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory(2020B1212030010)Foshan Innovative and Entrepreneurial Research Team Program(2018IT100031)the support from the Center for 1D/2D Quantum Materials and the State Key Laboratory of Advanced Displays and Optoelectronics Technologies at HKUST。
文摘The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sensor,based on separate designs for sensing,memory,and processing units,limits its integration density.Moreover,redundant signal communication significantly increases energy consumption.Current neuromorphic devices integrating sensing and signal processing show promise in various computer vision applications,but there is still a need for frame-based imaging with good compatibility.In this study,we developed a dual-mode image sensor based on a high-density all-inorganic perovskite nanowire array.The device can switch between frame-based standard imaging mode and neuromorphic imaging mode by applying different biases.This unique bias-dependent photo response is based on a well-designed energy band diagram.The biomimetic alignment of nanowires ensures the potential for high-resolution imaging.To further demonstrate the imaging ability,we conducted pattern reconstruction in both modes with a 10×10 crossbar device.This study introduces a novel image sensor with high compatibility and efficiency,suitable for various applications including computer vision,surveillance,and robotics.
基金The author acknowledges the financial support by the City University of Hong Kong(9380107 and 7005943).
文摘All inorganic CsPbBr_(3) quantum dots(QDs)are regarded as excellent candidates for next-generation emitters due to their high photoluminescence quantum yield(PLQY)and defect tolerance.However,the poor stability and degraded luminescent performance may impede their further commercialization because of the separation of conventional ligands from the QDs surfaces.Recently,Zang replaced the regular oleic acid with 2-hexyl-decanoic acid(DA),which possesses higher binding energy on the QDs surfaces,to act as ligands of QDs,exhibiting PLQY of 96%and excellent stabilities against ethanol and water.WLEDs with DA-modified CsPbBr_(3) QDs achieved improved thermal stability,a color rendering index of 93,a power efficiency of 64.8 lm/W and a properly correlated color temperature value of 3018 K,implying their prominent applications in solid-state lighting and displays.
基金The authors acknowledge the financial support from the Natural Science Foundation of China(Nos.21931002 and 22101123)the National Key Research and Development Program of China(2018YFB0704100)+4 种基金the Shenzhen Science and Technology Innovation Committee(no.JCYJ20200109140812302)the Leading talents of Guangdong province program(2016LJ06N507)the Guangdong Provincial Key Laboratory of Energy Materials for Electric Power(no.2018B030322001)the Guangdong Provincial Key Laboratory of Catalysis(no.2020B121201002)Outstanding Talents Training Fund in Shenzhen.
文摘For the further improvement of the power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs),the buried interface between the perovskite and the electron transport layer is crucial.However,it is challenging to effectively optimize this interface as it is buried beneath the perovskite film.Herein,we have designed and synthesized a series of multifunctional organic-inorganic(OI)complexes as buried interfacial material to promote electron extraction,as well as the crystal growth of the perovskite.The OI complex with BF4−group not only eliminates oxygen vacancies on the SnO_(2) surface but also balances energy level alignment between SnO_(2) and perovskite,providing a favorable environment for charge carrier extraction.Moreover,OI complex with amine(−NH_(2))functional group can regulate the crystallization of the perovskite film via interaction with PbI2,resulting in highly crystallized perovskite film with large grains and low defect density.Consequently,with rational molecular design,the PSCs with optimal OI complex buried interface layer which contains both BF4−and−NH_(2) functional groups yield a champion device efficiency of 23.69%.More importantly,the resulting unencapsulated device performs excellent ambient stability,maintaining over 90%of its initial efficiency after 2000 h storage,and excellent light stability of 91.5%remaining PCE in the maximum power point tracking measurement(under continuous 100 mW cm−2 light illumination in N2 atmosphere)after 500 h.
基金supported by the Research Foundation Flanders(grant 3E181170)supported by the China Scholarship Council(CSC,201806220066)。
文摘Polypyrrole(PPy)is wildly used as electrode material in supercapacitors due to its high conductivity,low cost,ease of handling,and ease of fabrication.However,limited capacitance and poor cycling stability hinder its practical application.After developing carboxylated cellulose nanocrystals(CNC-COO^(-))as immobile dopants for PPy to improve its cycling stability,we investigated the effect of different commonly used salts(KCl,NaCl,KBr,and NaClO_(4))as dopants during electrode fabrication by electropolymerization.The film’s capacitance increased from 160.6 to 183.4 F g^(-1)after adding a combination of KCl and NaClO_(4) into the electrodeposition electrolyte.More importantly,the porous and interconnected PPy/CNC-COO^(-)-Cl-(Cl O_(4)^(-))_0.5 electrode film exhibited an excellent capacitance of 125.0 F g^(-1)(0.78 F cm^(-2))at a high current density of 2.0 Ag^(-1)(20 m A cm^(-2),allowing charging in less than 1 min),increasing almost 204%over PPy/CNC-COO-films.A symmetric PPy/CNC-COO^(-)-Cl-(ClO_(4)^(-))_0.5 supercapacitor retained its full capacitance after 5000 cycles,and displayed a high energy density of 5.2 Wh kg^(-1)at a power density of 25.4 W kg^(-1)(34.5μWh cm^(-2) at 1752.3μW cm^(-2)).These results reveal that the porous structure formed by doping with CNC-COO-and inorganic salts opens up more active reaction areas to store charges in PPy-based films as the stiff and ribbon-like CNC-COO-as permanent dopants improve the strength and stability of PPy-based films.Our demonstration provides a simple and practical way to deposit PPy based supercapacitors with high capacitance,fast charging,and excellent cycling stability.
基金We thank the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)+1 种基金the National Natural Science Foundation of China(21961160720 and 52203217)the China Postdoctoral Science Foundation(2021M690805)for financial support.
文摘After fast developing of single-junction perovskite solar cells and organic solar cells in the past 10 years,it is becoming harder and harder to improve their power conversion efficiencies.Tandem solar cells are receiving more and more attention because they have much higher theoretical efficiency than single-junction solar cells.Good device performance has been achieved for perovskite/silicon and perovskite/perovskite tandem solar cells,including 2-terminal and 4-terminal structures.However,very few studies have been done about 4-terminal inorganic perovskite/organic tandem solar cells.In this work,semi-transparent inorganic perovskite solar cells and organic solar cells are used to fabricate 4-terminal inorganic perovskite/organic tandem solar cells,achieving a power conversion efficiency of 21.25%for the tandem cells with spin-coated perovskite layer.By using drop-coating instead of spin-coating to make the inorganic perovskite films,4-terminal tandem cells with an efficiency of 22.34%are made.The efficiency is higher than the reported 2-terminal and 4-terminal inorganic perovskite/organic tandem solar cells.In addition,equivalent 2-terminal tandem solar cells were fabricated by connecting the sub-cells in series.The stability of organic solar cells under continuous illumination is improved by using semi-transparent perovskite solar cells as filter.
基金This work was supported by the National Natural Science Foundation of China(U1904216 and U22A20141)the Natural Science Foundation of Changsha City(kq2208258).
文摘The practical application of Li metal anodes(LMAs)is limited by uncontrolled dendrite growth and side reactions.Herein,we propose a new friction-induced strategy to produce high-performance thin Li anode(Li@CFO).By virtue of the in situ friction reaction between fluoropolymer grease and Li strips during rolling,a robust organic/inorganic hybrid interlayer(lithiophilic LiF/LiC_(6)framework hybridized-CF_(2)-O-CF_(2)-chains)was formed atop Li metal.The derived interface contributes to reversible Li plating/stripping behaviors by mitigating side reactions and decreasing the solvation degree at the interface.The Li@CFO||Li@CFO symmetrical cell exhibits a remarkable lifespan for 5,600 h(1.0 mA cm^(-2)and 1.0 mAh cm^(-2))and 1,350 cycles even at a harsh condition(18.0 mA cm^(-2)and 3.0 mAh cm^(-2)).When paired with high-loading LiFePO4 cathodes,the full cell lasts over 450 cycles at 1C with a high-capacity retention of 99.9%.This work provides a new friction-induced strategy for producing high-performance thin LMAs.
基金supported by the National Natural Science Foundation of China(62004058,U21A2076,21701041,52071048)Natural Science Foundation of Hebei Province(F2020202022)+6 种基金the Open Fund of the State Key Laboratory of Integrated Optoelectronics(IOSKL2020KF09)State Key Laboratory of Reliability and Intelligence of Electrical Equipment(EERI-PI20200005)the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-074)Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0629).L.Ding thanks the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(21961160720).
文摘Facing the poor environmental stability of traditional methylammonium or formamidinium-based lead halide per-ovskites,scientists turn their attention to inorganic lead hal-ide perovskites(ILHPs)with narrow bandgaps,excellent thermal stability and reduced ion migration compared to their organic/inorganic counterparts[1−4].Up to now,the PCEs for ILHP solar cells exceed 21%[5].Especially,the preferred black ILHP(e.g.CsPbI3)with the smallest bandgap of~1.7 eV and single-halide composition for avoiding phase separation is crucial for high-performance single-junction solar cells and can be applied in tandem devices as the top cells[6,7].However,small Cs+(167 pm)in CsPbI3 with a tolerance factor close to 0.8 is unsuitable for the 3D PbI3-framework[8].The mis-matched size of cations will induce lattice strain and the per-ovskite spontaneously transforms to undesired non-photoact-ive yellow phase(δ-phase,like NH4CdCl3)(Fig.1(a))[9,10].There-fore,improving lattice symmetry and reducing lattice strain are the strategies for inhibiting the phase transition of ILHPs.