Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of ...Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).展开更多
A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, ...A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.展开更多
Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration st...Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration strategy with triethyl phosphate(TEP),which successfully prolonged the lifespan of end-of-life(EOL)polyvinylidene fluoride(PVDF)membranes in a large-scale MBR.The regenerated(Rg)membrane exhibited a water permeance of 534.8±45.7 L m^(-2)h^(-1)bar-1,along with stable rejection rate,which was comparable with that of the new membrane.Furthermore,compared to the membrane subjected solely to preliminary cleaning,the Rg membrane presented a more hydrophilic surface due to the combination of preliminary cleaning and solvent-based processing.Besides,the Rg membrane presented less fouling propensity with the critical flux of 15.2 L m^(-2)h^(-1),significantly higher than that of the EOL membrane(4.0 L m^(-2)h^(-1)).Importantly,the membrane regeneration strategy was capable of guaranteeing the effluent quality in MBR systems for treating real municipal wastewater.This study provides an eco-friendly membrane regeneration strategy for effectively removing the irrecoverable foulants,thereby promoting the advancement of sustainable membrane-based wastewater treatment technology.展开更多
文摘Under a constant pressure, a pilot-plant test was conducted through the use of anoxic-aerobic membrane bioreactor (AO-MBR), and this test operated steadily for 251 days. During the experiment, there were a total of four membrane cleaning processes, for the 90th day, the 150th day, the 210th day and the 240th day, respectively (The cleaning cycle was 90 days, 60 days, 60 days and 30 days, respectively). From the initial 33.26 L/m^2.b dropped to 20.03 L/m^2.h after the fourth membrane cleaning, membrane flux reduced to 60.22% of the initial flux. During the 180 thd-210 thd of the experiment, the powdered activated carbon (PAC), the segment size of which is 80-100, was put into anoxic reactor. Membrane flux decreased from 16.02 L/m^2·h to 15.29 L/m^2·h, and then rose to 15.65L/m^2·h. The dosing of PAC had a significant effect on the maintenance of a high membrane flux and extending running time. Before several membrane cleanings, a wire of membrane was intercepted from membrane module. It was found that the membrane surface sediments seemed to the inorganic colloid formed by Fe^2+, Ca^2+ and biofilm formed by some micro-organisms after the membrane surface pollutants were analyzed preliminarily with scanning electron microscopy (SEM).
基金Supported by the National Natural Science Foundationof China!(No.59878025)
文摘A long term domestic wastewater treatment experiment was conducted using a recirculating ceramic ultra filtration membrane bioreactor (CUFMB) system. Three experiments were run with a hydraulic retention time of 5h, sludge retention times of 5d, 15d, and 30d and a membrane surface flow rate of 4m/s. The experiment studied the membrane fouling mechanism and cleaning techniques. The results show that a CUFMB system can provide continuous good quality effluent which is completely acceptable for reuse. The system is also not affected by fluctuations of the inlet flow. The CUFMB sludge loading rate is similar to that of conventional biological treatment units. However, the volumetric loading rate of the CUFMB is 24 times that of conventional biological treatment units. Membrane fouling occurs due to channel clogging, which could be easily removed, and surface fouling, which can be effectively removed using the method described in this work which includes water rinsing, base cleaning, and acid washing.
基金National Natural Science Foundation of China(Nos.51925806 and 52200108)for the financial support of the worksupported by the Chenguang Program of Shanghai Education Development FoundationShanghai Municipal Education Commission。
文摘Membrane will inevitably reach the end of its lifespan due to the irrecoverable fouling accumulation in membrane bioreactors(MBRs)during long-term operation.Herein,we developed an eco-friendly membrane regeneration strategy with triethyl phosphate(TEP),which successfully prolonged the lifespan of end-of-life(EOL)polyvinylidene fluoride(PVDF)membranes in a large-scale MBR.The regenerated(Rg)membrane exhibited a water permeance of 534.8±45.7 L m^(-2)h^(-1)bar-1,along with stable rejection rate,which was comparable with that of the new membrane.Furthermore,compared to the membrane subjected solely to preliminary cleaning,the Rg membrane presented a more hydrophilic surface due to the combination of preliminary cleaning and solvent-based processing.Besides,the Rg membrane presented less fouling propensity with the critical flux of 15.2 L m^(-2)h^(-1),significantly higher than that of the EOL membrane(4.0 L m^(-2)h^(-1)).Importantly,the membrane regeneration strategy was capable of guaranteeing the effluent quality in MBR systems for treating real municipal wastewater.This study provides an eco-friendly membrane regeneration strategy for effectively removing the irrecoverable foulants,thereby promoting the advancement of sustainable membrane-based wastewater treatment technology.