The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was pr...The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.展开更多
Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical ...Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T. D. ) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at twavelength range of 300 - 800 nm.展开更多
Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum a...Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.展开更多
Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were...Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.展开更多
Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 ...Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.展开更多
Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, ...Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er^(3+) were calculated by Judd-Ofelt theory, and stimulated emission cross-section of (()~4I_(13/2))→(()~4I_(15/2)) transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er^(3+)-doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er^(3+)-doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.展开更多
TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These result...TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These results show that the range of particle size of TiO_2 isfrom 20 to 30 nm. The mechanism of TiO_2 photocatalysis reaction has been discussed extensively.Photocatalytic activities of nanometer TiO_2 are also evaluated by degradation of the crystal violetsolution. Experimental results indicate that the synergistic action of H_2O_2 and ultrasonic wavegreatly enhances photo-catalytic reaction of TiO_2.展开更多
Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory,...Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses展开更多
Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. F...Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength , were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃ ) reaches 4100, the change in relative dielectric constant with temperature is - 10% to 10% within the range of - 15 - 100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm^-1, which can be used in manufacturing high voltage ceramic capacitors展开更多
The Nd 3+ doped gadolinium vanadate Nd∶GdVO 4 is a new type of crystal with laser properties superior to Nd∶YVO 4. Experiment results show that the former has larger absorption cross section (3.261×10 ...The Nd 3+ doped gadolinium vanadate Nd∶GdVO 4 is a new type of crystal with laser properties superior to Nd∶YVO 4. Experiment results show that the former has larger absorption cross section (3.261×10 -19 cm 2) and larger emission cross section (9 283×10 -20 cm 2). The heat conductivity of Nd∶GdVO 4 is similar to that of Nd∶YAG, therefore it is a promising crystal for LD pumped laser. It is used to gain compact, high effect and all solid state lasers. The absorption spectra and fluorescence spectra were reported and the relationship between spectra and crystal structure was analyzed. Characteristics of energy levels of Nd 3+ in the Nd∶GdVO 4 crystal were discussed. The possibility of achieving laser oscillation at 0.91 μm was discussed.展开更多
PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructu...PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.展开更多
The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) ...The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) analysis. To compare with the pure TiO_2, a distinct enhancement in the shear stress under dc electric field was found by using such materials. This can be explained by the increase of the dielectric loss and dielectric constant at low frequency. The effects of the crystal structure of the particles on the dielectric property and ER performance of materials were investigated.展开更多
Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and e...Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and ethylene glycol as the chelating agents of metal ions. The perovskite-type BaCe_(0.95)Y_(0.05)O_(3-δ) powders with uniform shape and smaller than 40 nm in sized were obtained through the combustion of the polymeric precursor sol at the existence of nitric acid and ammonium hydroxide. It was found the particle size could be controlled by modulating the quantities of nitric acid and ammonium hydroxide, the quantities of the residue, carbonate ions were also affected by the quantities of the citric acid and ethylene glycol.展开更多
Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) solid electrolyte with nonstoichiometric composition was prepared by high temperature solid-state reaction. Phase composition, surface and fracture morphologies of the specimen were c...Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) solid electrolyte with nonstoichiometric composition was prepared by high temperature solid-state reaction. Phase composition, surface and fracture morphologies of the specimen were characterized by using XRD and SEM, respectively. Ionic conduction was researched by gas concentration cell, the performance of hydrogen-air fuel cell was measured in the temperature range of 600~1000 ℃, and compared them with those of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). The results indicate that Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) is a single-phase perovskite-type orthorhombic system. It is a pure proton conductor in the temperature range of 600~1000 ℃ in hydrogen atmosphere, and its proton conduction is superior to that of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). It is a mixed conductor of oxide ion and electron hole in oxygen atmosphere. At 1000 ℃, the performance of the fuel cell in which Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) as electrolyte is higher than that of BaCe_(0.8)Eu_(0.2)O_(3-α) or Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α).展开更多
Mass production of uniform MgO nanostructures has been achieved by a thermal evaporation method. X-ray diffraction (XRD) analyses show the product is composed of pure single-crystalline MgO. Scanning electron micros...Mass production of uniform MgO nanostructures has been achieved by a thermal evaporation method. X-ray diffraction (XRD) analyses show the product is composed of pure single-crystalline MgO. Scanning electron microscopy (SEM) and transmission elecwon microscopy (TEM) characterizations show that the MgO branched nanostructures consist of many sfim nanowires growing from the thick MgO rods. The as-synthesized nanowires have a length of several tens of microns and a diameter of several tens of nanometers. The preferred growth direction of the nanowires is [001]. Many nanowires are found to have a dendritic structure and temperature grade is thought to be the main cause of the growth of this structure. Zn nanoparticles scattered on the surface of the MgO rods are thought to be the catalyst of the VLS (vapor-liquid-solid) growth of the MgO nanowires. Room-temperature photoluminescence measurements show that the synthesized MgO nanostructures have a strong emission band at 401 nm and a weak emission band at 502 nm.展开更多
In this study two types of TIN films were prepared, one using the filtered cathodic arc plasma (FCAP) technique with an in-plane "S" triter, and the other using the multi-arc ion-plating (MAIP), and both deposit...In this study two types of TIN films were prepared, one using the filtered cathodic arc plasma (FCAP) technique with an in-plane "S" triter, and the other using the multi-arc ion-plating (MAIP), and both deposited under the same parameters. Comparisons of the texture, hardness, roughness, tribological and electrochemical corrosion behaviors of the two types of TiN films were given. The TiN films obtained by the FCAP technology were found to be highly uniform, smooth and macroparticle-free. The TiN films deposited by FCAP had a (111) preferred orientation, while there was no texture in the films deposited by MAIP. Under low load the two kinds of TiN coatings had very different wear mechanisms; the films of FCAP had a lower wear rate and friction coefficient compared with the TiN films deposited by the MAIP technique. The dense and hole-free structure of TiN films of FCAP could effectively avoid the avalanche of TiN films from the substrate during corrosion tests.展开更多
TiO2/(O' + β')-Sialon multiphase ceramics were prepared with nano TiO2 (anatase) powder and (O' + β')-Sialon powder as raw materials. Effect of Yb2O3 additive on transformation behavior of anatase for Ti...TiO2/(O' + β')-Sialon multiphase ceramics were prepared with nano TiO2 (anatase) powder and (O' + β')-Sialon powder as raw materials. Effect of Yb2O3 additive on transformation behavior of anatase for TiO2/(O' + β')-Sialon multi phase ceramic was investigated and its influence mechanism was discussed. XRD was employed for the analysis of phase composition and lattice parameters. The results show that even though Yb2O3 has no obvious influence on starting temperature of phase transformation, it significantly accelerates the transformation process, which displays a weakened effect with more Yb2O3 addition. There exist two forms of the added Yb2O3 : some enters TiO2 lattice and the other deposits on the surface of TiO2. The function of Yb2O3 on phase transformation of anatase can be attributed to the coaction of active and negative influence mechanisms as follows: some Yb^n+ enter TiO2 lattice and replace Ti^4+ , as well as the redox reaction between Yb^3+ and TiO2, which promote the transformation, whereas other Yb2O3 deposits on the surface of TiO2, and Ti- O-Yb bond is formed by the coaction of Yb^3+ and TiO2, which inhibit the process.展开更多
La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by v...La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.展开更多
The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investiga...The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.展开更多
The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase o...The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase of the ceramics was characterized by the X-ray diffraction (XRD) method. The conductivity of the ceramics was measured by the AC complex impedance technique at 700- 1200 ℃. The ratio of the cubic phase in the ceramics improves with increasing CeO2 content, leading to a enlargement of the oxygen ionic migration channel. The contact resistance between conductive phase particles decreases with increasing CeO2 content, leading to a lower migration hindrance of the oxygen ionic. Consequently, the ionic conductivity of the ceramics improves with increas- ing CeO2 content. Additionally, an analysis for this phenomenon was also presented.展开更多
基金Project supported by Science and Technology Foundation of Yunnan Province (2002GG-09)
文摘The effects of rare-earth La_2O_3 addition on microstructures and electrical properties of SrTiO_3 ceramics were investigated. Semiconductor SrTiO_3-based voltage-sensing and dielectric dual functional ceramics was prepared by a single step sintering technology in this study, and the effects of the content of La_2O_3 on characteristics of the product were discussed in terms of microstructures and electrical properties of materials. The results show that SrTiO_3-based ceramics doped with La_2O_3 exhibits more homogeneous grain distribution, greater grain size, and excellent voltage sensing and dielectric characteristics than those without La_2O_3 doping. The samples doped with 1 1% La_2O_3 were sintered at 1420 ℃ in N_2+C weak reducing atmosphere. The average grain size of the samples doped with La_2O_3 is 40 μm, the breakdown voltage of 19.7 V·mm^(-1), the nonlinear exponent of 7.2, and dielectric constant of 22500. The results reveal that final products are suitable to use in low operating voltage.
文摘Optically transparent alumina ceramics were fabricated by conventional process and sintered without pressure in H2 atmosphere. The results indicate that relative densities of alumina specimens increase to theoretical densities (T. D. ) with increasing content of La2O3. With increasing holding time during sintering, much less pores and larger grains were found in the sintered alumina samples. Higher transmittance was achieved in alumina codoped with MgO and La2O3 as compared with that doped with MgO only. The total-transmittance of alumina sample is up to 86% at twavelength range of 300 - 800 nm.
文摘Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.
文摘Novel Er3+-doped bismuth lead strontiam glass was fabricated and characterized, and the absorption spectrum and upconversion spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were found to be Ω2=3.27×10-20 cm2, Ω4=1.15×10-20 cm2, and Ω6=0.38×10-20 cm2. The oscillator strength, the spontaneous transition probabilities, the fluorescence branching ratios, and excited state lifetimes were also measured and calculated. The upconversion emission intensity varies with the power of infrared excitation intensity. A plot of log Iup vs log IIR yields a straight line with slope 1.86, 1.88 and 1.85, corresponding to 525, 546, and 657 nm emission bands, respectively, which indicates that a two-photon process for the red and green emission.
文摘Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.
文摘Er^(3+)-doped heavy metal oxyfluoride silicate glass was fabricated and characterized, and the absorption spectrum and fluorescence spectrum of the glass were studied. The Judd-Ofelt intensity parameters Ω_t (t =2, 4, 6), spontaneous transition probability, fluorescence branching ratio and radiative lifetime of each energy levels for Er^(3+) were calculated by Judd-Ofelt theory, and stimulated emission cross-section of (()~4I_(13/2))→(()~4I_(15/2)) transition was calculated by McCumber theory. The results show that fluorescence full width at half maximum and stimulated emission cross-section of Er^(3+)-doped heavy metal oxyfluoride silicate glass are broad and large, respectively. Compared with other host glasses, the gain bandwidth property of Er^(3+)-doped heavy metal oxyfluoride silicate glass is close to those of tellurite and bismuth glasses, and has advantage over those of silicate, phosphate and germante glasses.
文摘TiO_2 nanoparticles with different phases are prepared by hydrolysis oftitanium tetrabutoxide in the presence of HC1. The composition and microstructure of the resultingsamples are studied by XRD and TEM. These results show that the range of particle size of TiO_2 isfrom 20 to 30 nm. The mechanism of TiO_2 photocatalysis reaction has been discussed extensively.Photocatalytic activities of nanometer TiO_2 are also evaluated by degradation of the crystal violetsolution. Experimental results indicate that the synergistic action of H_2O_2 and ultrasonic wavegreatly enhances photo-catalytic reaction of TiO_2.
文摘Dy^3+-doped borate glasses (LBLB) with high effective visible fluorescence emission were synthesized. The absorption spectrum and fluorescence spectrum of this glass were measured and analyzed. By using J-O theory, the oscillator strengths for some absorption transitions were calculated according to the absorption spectra. The intensity parameters Ω1 (t = 2, 4, 6) of Dy^3+ were determined by using a least-squares fitting approach, and the values are 4.04 × 10^-20, 1.30 × 10^-20 and 1.82 × 10^-20 cm, respectively. The root-mean-square deviation δrma was calculated. Under UV light excitation, Dy^3+-doped borate glasses (LBLB) emit intense yellowish white lights. The excitation spectrum indicates that argon laser is the effective excitation source in Dy^3+-doped LBLB glasses
文摘Different amounts of dysprosium oxide were incorporated into barium titanate powders synthesized by hydrothermal method. Relations of substitution behaviors and lattice parameters with solid-solubility were studied. Furthermore, the influences of dysprosium oxide doping fraction on grain size and dielectric properties of barium titanate ceramic, including dielectric constant and breakdown electric field strength , were investigated via scanning electron microscope, X-ray diffraction and electric property tester. The results show that dysprosium oxide can restrain abnormal grain growth during sintering and that fine-grained and high density of barium titanate ceramic can result in excellent dielectric properties. As mass fraction of dysprosium oxide is 0.6%, the lattice parameters of grain increase to the maximum because of the lowest vacancy concentration. The electric property parameters are cited as following: dielectric constant (25 ℃ ) reaches 4100, the change in relative dielectric constant with temperature is - 10% to 10% within the range of - 15 - 100 ℃, breakdown electric field strength (alternating current) achieves 3.2 kV·mm^-1, which can be used in manufacturing high voltage ceramic capacitors
文摘The Nd 3+ doped gadolinium vanadate Nd∶GdVO 4 is a new type of crystal with laser properties superior to Nd∶YVO 4. Experiment results show that the former has larger absorption cross section (3.261×10 -19 cm 2) and larger emission cross section (9 283×10 -20 cm 2). The heat conductivity of Nd∶GdVO 4 is similar to that of Nd∶YAG, therefore it is a promising crystal for LD pumped laser. It is used to gain compact, high effect and all solid state lasers. The absorption spectra and fluorescence spectra were reported and the relationship between spectra and crystal structure was analyzed. Characteristics of energy levels of Nd 3+ in the Nd∶GdVO 4 crystal were discussed. The possibility of achieving laser oscillation at 0.91 μm was discussed.
文摘PSN-PZN-PZT + x wt. %Cr2O3, X = 0.0-0-9, were prepared by conventional mixed oxide techniques at sintering temperatures of 1220 degrees C-1300 degrees C for 2 h. The effect of sintering temperature on the microstructure and the piezoelectric properties was investigated by XRD, SEM, and other conventional measurement. The result indicated that with temperature increasing, the valence of Cr ion from Cr5+ or Cr6+ changes into C3+, and the piezoelectric properties turn hard. With increasing Cr2O3 content, the amount of rhombohedral phases increases and the morphotropic boundary phase is correspondingly shifts to rhombohedral phase. A uniform microstructure and excellent comprehensive properties were obtained at 1240 degrees C as the amount of Cr2O3 is 0.5 wt.%.
文摘The nanosized particle materials of doped-TiO_2 with Y_2O_3 were prepared by means of sol-gel technique for use in electrorheological (ER) fluids, and their crystal structures were measured by X-ray diffraction (XRD) analysis. To compare with the pure TiO_2, a distinct enhancement in the shear stress under dc electric field was found by using such materials. This can be explained by the increase of the dielectric loss and dielectric constant at low frequency. The effects of the crystal structure of the particles on the dielectric property and ER performance of materials were investigated.
文摘Nanosized BaCe_(0.95)Y_(0.05)O_(3-δ) powders with the homogeneous composition were synthesized by a new combustion process based on the Pechini method. A polymeric precursor sol was formed by use of citric acid and ethylene glycol as the chelating agents of metal ions. The perovskite-type BaCe_(0.95)Y_(0.05)O_(3-δ) powders with uniform shape and smaller than 40 nm in sized were obtained through the combustion of the polymeric precursor sol at the existence of nitric acid and ammonium hydroxide. It was found the particle size could be controlled by modulating the quantities of nitric acid and ammonium hydroxide, the quantities of the residue, carbonate ions were also affected by the quantities of the citric acid and ethylene glycol.
文摘Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) solid electrolyte with nonstoichiometric composition was prepared by high temperature solid-state reaction. Phase composition, surface and fracture morphologies of the specimen were characterized by using XRD and SEM, respectively. Ionic conduction was researched by gas concentration cell, the performance of hydrogen-air fuel cell was measured in the temperature range of 600~1000 ℃, and compared them with those of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). The results indicate that Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) is a single-phase perovskite-type orthorhombic system. It is a pure proton conductor in the temperature range of 600~1000 ℃ in hydrogen atmosphere, and its proton conduction is superior to that of BaCe_(0.8)Eu_(0.2)O_(3-α) and Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α). It is a mixed conductor of oxide ion and electron hole in oxygen atmosphere. At 1000 ℃, the performance of the fuel cell in which Ba_(1.03)Ce_(0.8)Eu_(0.2)O_(3-α) as electrolyte is higher than that of BaCe_(0.8)Eu_(0.2)O_(3-α) or Ba_(0.98)Ce_(0.8)Eu_(0.2)O_(3-α).
基金This work was financially supported by the National Natural Science Foundation of China (No. 20471019) the Natural Science Foundation of Anhui Province, China (No. 050440904).
文摘Mass production of uniform MgO nanostructures has been achieved by a thermal evaporation method. X-ray diffraction (XRD) analyses show the product is composed of pure single-crystalline MgO. Scanning electron microscopy (SEM) and transmission elecwon microscopy (TEM) characterizations show that the MgO branched nanostructures consist of many sfim nanowires growing from the thick MgO rods. The as-synthesized nanowires have a length of several tens of microns and a diameter of several tens of nanometers. The preferred growth direction of the nanowires is [001]. Many nanowires are found to have a dendritic structure and temperature grade is thought to be the main cause of the growth of this structure. Zn nanoparticles scattered on the surface of the MgO rods are thought to be the catalyst of the VLS (vapor-liquid-solid) growth of the MgO nanowires. Room-temperature photoluminescence measurements show that the synthesized MgO nanostructures have a strong emission band at 401 nm and a weak emission band at 502 nm.
基金the National Natural Science Foundation of China (No. 20571042)the Natural Science Foundation of the Education Department of Henan Province, China (No. 2007430001)the Natural Science Foundation of Henna University (No. 06YBZR008).
文摘In this study two types of TIN films were prepared, one using the filtered cathodic arc plasma (FCAP) technique with an in-plane "S" triter, and the other using the multi-arc ion-plating (MAIP), and both deposited under the same parameters. Comparisons of the texture, hardness, roughness, tribological and electrochemical corrosion behaviors of the two types of TiN films were given. The TiN films obtained by the FCAP technology were found to be highly uniform, smooth and macroparticle-free. The TiN films deposited by FCAP had a (111) preferred orientation, while there was no texture in the films deposited by MAIP. Under low load the two kinds of TiN coatings had very different wear mechanisms; the films of FCAP had a lower wear rate and friction coefficient compared with the TiN films deposited by the MAIP technique. The dense and hole-free structure of TiN films of FCAP could effectively avoid the avalanche of TiN films from the substrate during corrosion tests.
文摘TiO2/(O' + β')-Sialon multiphase ceramics were prepared with nano TiO2 (anatase) powder and (O' + β')-Sialon powder as raw materials. Effect of Yb2O3 additive on transformation behavior of anatase for TiO2/(O' + β')-Sialon multi phase ceramic was investigated and its influence mechanism was discussed. XRD was employed for the analysis of phase composition and lattice parameters. The results show that even though Yb2O3 has no obvious influence on starting temperature of phase transformation, it significantly accelerates the transformation process, which displays a weakened effect with more Yb2O3 addition. There exist two forms of the added Yb2O3 : some enters TiO2 lattice and the other deposits on the surface of TiO2. The function of Yb2O3 on phase transformation of anatase can be attributed to the coaction of active and negative influence mechanisms as follows: some Yb^n+ enter TiO2 lattice and replace Ti^4+ , as well as the redox reaction between Yb^3+ and TiO2, which promote the transformation, whereas other Yb2O3 deposits on the surface of TiO2, and Ti- O-Yb bond is formed by the coaction of Yb^3+ and TiO2, which inhibit the process.
基金Project supported by the National Science Foundation (50272044) of China
文摘La_2O_3-doped CaO-MgO-Nb_2O_5-TiO_2 system ceramics were prepared by solid-state ceramic technique. The microstructure and microwave dielectric properties of CaO-MgO-Nb_2O_5-TiO_2-La_2O_3 ceramics can be adjusted by varying the amount of La^(3+) ions. The results show that the replacement of Ca^(2+) by La^(3+) at A-site of the ceramics can increase the quality factor Q·f value as well as the temperature coefficient of resonant frequency τ_f and decrease the dielectric constant ε_r. With increase of La^(3+) contents, the dielectric constant decreases from 57 to 35 and Q·f value increases from 33400 GHz to 35000 GHz (at 7.6 GHz). Meanwhile, the temperature coefficient of resonant frequency is improved towards near zero. The dielectric properties of these compounds are related to octahedra tilting due to deficient vacancies at A-site.
文摘The effect of La^3 + , Sr^2+ on the microstructure and microwave properties of CaO-MgO-Nb2O5-TiO2 system ceramics was investigated. The result shows that a single complex perovskite structure formed within investigated composition range in La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramics. With increasing of La^3+ , Sr^2+ content, the structure of La^3+ , Sr2-doped CaO-MgO-Nb2O5-TiO2 system ceramic respectively maintain orthorhombic type.
文摘The ultrafine CexMg0.06Zr1-xO1.94 ( x = 0 16% ) powders were synthesized by a chemical co-precipitated method. The pressed compacts were sintered in air at 1300, 1400, 1500, 1600℃ for 3 h, respectively. The phase of the ceramics was characterized by the X-ray diffraction (XRD) method. The conductivity of the ceramics was measured by the AC complex impedance technique at 700- 1200 ℃. The ratio of the cubic phase in the ceramics improves with increasing CeO2 content, leading to a enlargement of the oxygen ionic migration channel. The contact resistance between conductive phase particles decreases with increasing CeO2 content, leading to a lower migration hindrance of the oxygen ionic. Consequently, the ionic conductivity of the ceramics improves with increas- ing CeO2 content. Additionally, an analysis for this phenomenon was also presented.