Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the r...Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the relationships between plants and phosphorus' fractions and availability in the Loess Plateau of China. Twenty-two plant communities were surveyed and soil samples under different plant canopies were collected for the determination of soil properties and inorganic phosphorus fractionation. The results showed that Leguminosae and Lilaceae reduced pH and increased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies, while Labiatae and Rosaceae increased pH and decreased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies. The contents of Ca2P, CasP, AI-P and Fe-P were highly related with soil Oisen phosphorus. They were all higher in soils under Leguminosae and Lilaceae and lower in softs under Labiatae and Rosaceae. The results of this study indicate that Leguminosae and Lilaceae improved phosphorus nutrition in soils, yet Labiatae and Rosaceae impeded the improvement of phosphorus nutrition in soils under their canopies, which will be of more help to instruct vegetation restoration in the region and provide information for soil development.展开更多
Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir planta...Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P.展开更多
The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day o...The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phos- phorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2,120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemen- ted with 0,250,500 ,or 1,000 P-'rU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conver- sion as a result of feeding the different sources of in- organic phosphorus. The digestibility of phosphorus was significantly lower (P =0.01 ) for chicks fed di- ets supplemented with tricalcium phosphate than for chicks fed the other two diets. However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feedconversion showed a linear improvement (P = 0.03 ) with increasing levels of phytase inclusion ( days 0 to 33 ). Phytase supplementation resulted in linear increa- ses in the digestibility of dry matter (P = 0.02 ), crude protein ( P --- 0.04 ) and energy ( P 〈 0.01 ). Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium ( P = 0.05 ) and bone breaking strength (P = 0.04 ) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets sup- plemented with dicalcium phosphate, tricalcium phos- phate or defluorinated phosphate was similar and therefore production costs could be lowered by choo- sing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formu- lated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase sup- plementation. However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be suf- ficient justification for the routine inclusion of phytase in diets fed to broilers.展开更多
After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphoru...After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions weremeasured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantlyamong soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased thatin red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to differentextent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P andCa-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reducedobviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, forchemical study of soil phosphorus, application of fresh soil samples can provide more reliable results.展开更多
The correlation coefficients and scattering were studied in Ki and new inbred lines for phytic acid (PA) and inorganic phosphorus content (InP) content in seeds of tropical maize (Zea mays L.). The understanding...The correlation coefficients and scattering were studied in Ki and new inbred lines for phytic acid (PA) and inorganic phosphorus content (InP) content in seeds of tropical maize (Zea mays L.). The understanding of the variability in PA and InP characters would be useful in a breeding program. A total of 16 Ki and 25 new inbred lines of tropical maize were planted in Completely Randomized Design (CRD) during late rainy season, 2007 to early rainy season, 2009 at Inseechandrastitya Institute for Crops Research and Development, Thailand. The result showed low correlation with no statistical significant between PA and InP contents in corn seeds performed either in different sources of inbred lines or years. For PA content, most of inbred lines were skewed toward high PA (〉 900 mg/100 g) both in Ki and new inbred lines in every year. The lowest PA value found in Ki inbred lines both in two years were Ki10, Ki15, Ki20, and Ki52.30A10-S11-43-1-3 was the lowest PA inbred lines observing in two years in new germplasm.展开更多
The study aimed to determine the genetic variances of phytic acid (myo-inositol 1,2,3,4,5,6 hexakis-dihydrogen phosphate) (PA) and inorganic phosphorus contents (InP) in grains of tropical maize (Zea mays L.)....The study aimed to determine the genetic variances of phytic acid (myo-inositol 1,2,3,4,5,6 hexakis-dihydrogen phosphate) (PA) and inorganic phosphorus contents (InP) in grains of tropical maize (Zea mays L.). The understanding of genetic variances in PA and InP in tropical maize would be useful for breeding management in tropical region. A total of 16 Ki inbred lines and 26 new inbred lines of tropical maize were planted in Completely Randomized Design (CRD) on the dry season 2008 at lnseechandrastitya Institute for Crops Research and Development, Thailand. The results showed that genotypic differences were highly significant (P 〈 0.01) for InP in both sources of germplasm, but genotype effect only was found significant in new inbred lines for PA content. The values for broad sense heritability (h2b) was generally lower on PA in maize grains compared with InP both in Ki and new inbred lines [h^2b of PA: 2.42 (Ki), 14.18 (commercial hybrid extracted); h^2b of InP: 32 (Ki) and 29.53 (commercial hybrid extracted)].展开更多
Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P205 ha-1 (P0 and P100, respectivel...Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P205 ha-1 (P0 and P100, respectively), was carried out as a part of a long-term Pfertilizer field trial. Plant and soil analyses showed that P-deficient maize reduced its growth rate, increased P use efficiency, and formed more thin roots with the diameter less than 0.6 mm at jointing and silking stages, compared to the plants treated with P100. Further, there were no differences in major inorganic P fractions (Ca2-P, Cas-P, Al-P, Fe-P, occluded P and Ca10-P) between the rhizospheric and bulk soils at each harvest, even when soil Olsen-P was only 1.38 mg kg-1. These results suggested that maize responded to P deficiency by reducing the internal P demand for growth and increasing P acquisition ability by favorable root morphological alteration at low carbon cost.展开更多
Excess phosphorus (P) from agricultural soils contributes to eutrophication in water bodies. Samples (n = 60) were taken from sites where rice paddies have been converted to vegetable fields for 0, 〈 10, 10-20, a...Excess phosphorus (P) from agricultural soils contributes to eutrophication in water bodies. Samples (n = 60) were taken from sites where rice paddies have been converted to vegetable fields for 0, 〈 10, 10-20, and 〉 20 years and analyzed for five inorganic P (Pi) fractions, three organic P (Po) fractions, and several soil parameters to investigate how land use conversion affects Pi and Po fractions in a peri-urban area of China with soils characteristic of many agricultural areas of Asia. Significant increases of 33, 281, 293, and 438 mg kg-i were found for soluble and loosely bound Pi (SL-Pi), aluminum-bound Pi (Al-Pi), calcium-bound Pi (Ca-Pi), and iron-bound Pi (Fe-Pi), respectively, after conversion from rice paddies to vegetable fields. Most of the increase in Pi was in the form of Fe-Pi, which increased from 8% of total P (TP) on paddy soil to 31% on the soil with 〉 20-year vegetable cultivation, followed by Al-Pi, which increased from 2% to 19% of TP. For Po fractions, there was no significant change in P concentrations. The conversion of land use from paddy fields to high intensity vegetable fields was causing significant changes in soil P fractious. Management practices were causing a buildup of soil P, primarily in the Fe-Pi fraction, followed by Ca-Pi and Al-Pi fractions. If current trends continue, a 30%-70% increase in TP could be expected in the next 20 years. Farmers in the area should reduce P application and use to maximize P uptake.展开更多
Inorganic soil phosphorus extractable with sodium bicarbonate (NaHCO3-Pi), soil pH and root hairs length and density in the rhizosphere of two winter wheat cultivars (Triticum aestivum L. cv. Shichun,Sleipner) grown o...Inorganic soil phosphorus extractable with sodium bicarbonate (NaHCO3-Pi), soil pH and root hairs length and density in the rhizosphere of two winter wheat cultivars (Triticum aestivum L. cv. Shichun,Sleipner) grown on a high pH Chinese silt loam (52.7 mg NaHCO3-Pi kg-1) and a Danish sandy loam (43.4mg NaHCO3-Pi kg-1) were studied to assess how these wheat cultivars differed in phoephorus uptake.The rhizosphere soil pH of two wheat cultivars grown on the two soils were fairly unchanged with increasing distance from the root surface. However the root hairs of Shichun were 2.1 times longer than those of Sleipner. Root surface area (RSA) of Shichun increased by 192% due to root hairs whereas root hairs of Sleipner increased RSA by 68% only. Hence the root system of Shichun was in contact with more soil than that of Sleipner, even though Sleipner had a longer root. Grown at the lower pH and level of NaHCO3-Pi in the Danish soil Shichun absorbed more inorganic phosphorus than Sleipner whereas at the higher pH and level of NaHCO3-Pi in the Chinese soil there was no phosphorus uptake difference between the two wheat cultivars.展开更多
Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different spe...Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.展开更多
Minjingu Phosphate Rock (MPR) from Northern Tanzania and the Ikutha Phosphate Rock (IPR) found in Central-Southeast Kenya are well documented as potential sources of phosphorous (P) available in East Africa. On-...Minjingu Phosphate Rock (MPR) from Northern Tanzania and the Ikutha Phosphate Rock (IPR) found in Central-Southeast Kenya are well documented as potential sources of phosphorous (P) available in East Africa. On-farm trials in phosphate-deficient soils in Western Kenya demonstrated MPR to be as effective as triple superphosphate (TSP) - 20% P, at equal P rates. The aim of this work is to determine the distribution of phosphorus in these phosphate rocks (PRs). The different phosphorus fractions were extracted using the modified Williams extraction procedure and analysis carried on a UV/VIS spectrometer (SHIMADZU UV-220-02 and NOVASPEC II). The analysis showed that the most abundant form of phosphorus in the phosphate rocks was the Inorganic Phosphorus (IP) contributing 74.20% of total phosphorus (TP) for Minjingu, and 83,28% of total phosphorus for Ikutha phosphate rock.展开更多
Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sew...Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sewage disposal,use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years.Moreover,the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s,and then to phosphorus after the 1990s.In addition,changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure.The half saturation constant(Ks) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years.Cell abundance percentages of dominant phytoplankton species with high Ks values for phosphorus and low Ks values for nitrogen have decreased since the 1980s,while those of dominant phytoplankton species with low Ks values for phosphorus and high Ks values for nitrogen increased during this period.展开更多
In most of the cereal crop, phytic acid is the main storage form of phosphorus, which can decrease the bioavailability of phosphate. Transgenic expression of phytase is regarded as an efficient way to release phosphat...In most of the cereal crop, phytic acid is the main storage form of phosphorus, which can decrease the bioavailability of phosphate. Transgenic expression of phytase is regarded as an efficient way to release phosphate from phytate in transgenic plants. In this study, a plant expression vector, containing the recombinant phytase gene driven by the maize ubiquitin (Ubi) promoter was constructed and introduced into an elite rice variety via Agrobacterium-mediated transformation. During the experiment, a total of 15 independent transgenic rice lines were regenerated. The results of PCR and Southern blot indicated that the target gene was integrated into the genome of transgenic rice plants. Moreover, the RT-PCR analysis of total RNAs extracted from the immature seeds of several transgenic lines showed that the recombinant phytase gene could be normally expressed. The inorganic phosphorus content, both in the mature seeds and the leaf was significantly higher in the transgenic plants than in the untransformed wild type.展开更多
The grain-filling characteristics of six rice varieties (combinations) and the relationships between their relative biochemistry composition during phytate synthesizing and grain plumpness were studied. Regarding resu...The grain-filling characteristics of six rice varieties (combinations) and the relationships between their relative biochemistry composition during phytate synthesizing and grain plumpness were studied. Regarding results for ISHR1, ISHR2, R198 and JW21, with good grain plumpness, the two-step-filling in superior spikelets and inferior spikelets was not clear, while for ISHR3 and 559, with poor grain plumpness, it was very clear. From booting stage to flowering stage, the contents of phytate and inositol in varieties with good grain plumpness was obviously higher than those in varieties with poor grain plumpness. While at grain filling stage, the content of inorganic phosphorus in varieties with poor grain plumpness was obviously higher than that in varieties with good grain plumpness. The contents of phytate and inositol from booting stage to flowering stage was highly significantly correlated with the initial filling power (R_0), the mean filling rate (R_M) and grain filling percentage (P_(GF)), and the content of inorganic phosphorus at grain filling stage was negatively significantly correlated with R_0, F_M and P_(GF). Furthermore, effective approach to improving grain filling was put forward.展开更多
The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorgani...The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus(DIP, Na H2PO4) and two dissolved organic phosphorus(DOP) compounds: guanosine 5-monophosphate(GMP) and triethyl phosphate(TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes(Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions.展开更多
The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China du...The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.展开更多
Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the ...Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of inorganic phosphorus and organic phosphorus,respectively.展开更多
Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHO...Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHOLIPASE C4(NPC4)in rapeseed(Brassica napus)releases phosphate from phospholipids to promote growth and seed yield,as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions.Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9(Cas9)-mediated knockout of Bna NPC4 led to elevated accumulation of phospholipids and decreased growth,whereas overexpression(OE)of Bna NPC4resulted in lower phospholipid contents and increased plant growth and seed production.We demonstrate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro,and plants with altered Bna NPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots,with a greater change in glycerolipids than sphingolipids in leaves,particularly under phosphate deficiency conditions.In addition,Bna NPC4-OE plants led to the upregulation of genes involved in lipid metabolism,phosphate release,and phosphate transport and an increase in free inorganic phosphate in leaves.These results indicate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.展开更多
基金supported by the National Key Basic Research Special Foundation Project(2007CB106803)National Natural Science Foundation(40801111, 41001137)One hundred-Talent Plan of Chinese Academy of Sciences,the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Program for Youthful Talents in Northwest A and F University
文摘Plants play an important role in soil phosphorus nutrition. However, the effect of plants on phosphorus nutrition in soils of the Loess Plateau of China is not well understood. This study was conducted to reveal the relationships between plants and phosphorus' fractions and availability in the Loess Plateau of China. Twenty-two plant communities were surveyed and soil samples under different plant canopies were collected for the determination of soil properties and inorganic phosphorus fractionation. The results showed that Leguminosae and Lilaceae reduced pH and increased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies, while Labiatae and Rosaceae increased pH and decreased organic matter, cation exchange capacity, total and Olsen phosphorus in soils under their canopies. The contents of Ca2P, CasP, AI-P and Fe-P were highly related with soil Oisen phosphorus. They were all higher in soils under Leguminosae and Lilaceae and lower in softs under Labiatae and Rosaceae. The results of this study indicate that Leguminosae and Lilaceae improved phosphorus nutrition in soils, yet Labiatae and Rosaceae impeded the improvement of phosphorus nutrition in soils under their canopies, which will be of more help to instruct vegetation restoration in the region and provide information for soil development.
基金supported by the Guangxi Special Fund Project for Innovation Driven Development (AA 17204087-8)the Innovation Project of Guangxi Graduate Education (YCSW2020022)。
文摘Successive cultivation of Chinese fir(Cunninghamia lanceolata) would markedly affect the distribution and accumulation of soil inorganic phosphorus(Pi).However,how different chronosequence phases of Chinese fir plantations exerting influences on the quality and quantity of soil Pi fractions in aggregate-scale remain poorly understood. This study researched the dynamic changes of aggregate-related Pi fractions encompassing occluded-P(O-P), aluminum-bound P(Al-P), iron-bound P(Fe-P), and calcium-bound P(Ca-P) in topsoil(0-20 cm) from different stand aged(9-, 17-, and 26-yr) Chinese fir plantations and one nearby abandoned land(CK) in Rongshui County,Guangxi, China. In this study, soil aggregates were classified into micro-aggregates(< 0.25 mm), small macro-aggregates(1-0.25 mm), medium macroaggregates(2-1 mm), and large macro-aggregates(> 2 mm) by one wet-sieving process. As the primary aggregate fractions correlated with better soil aggregate stability, the large macro-aggregates took the highest proportion in all aggregate sizes regardless of various stand ages of Chinese fir plantations. Besides, the 17-yr plantations of Chinese fir displayed the highest stability of aggregates structure. Compared with CK, all four soil Pi fractions from three different stand ages of Chinese fir plantations generally showed increasing trends.Irrespective of chronosequence phases, Al-P was mainly carried by small macro-aggregates. O-P showed the opposite tendency to Al-P, which had the lowest content in small macro-aggregates. Fe-P and Ca-P showed an even distribution in all aggregates.The contribution rates and stocks of each Pi fraction exhibited close relevance to the content of soil aggregates. As revealed from the results, planting of Chinese fir before 17-yr was beneficial to prompt the formation of large macro-aggregates and the level of soil P. But after 17-yr, successive monoculture planting of Chinese fir would reduce the stability of soil aggregates and render the losses of soil P. The dynamics of soil total phosphorous(TP) and Pi fractions contents were highly related to the stand ages of Chinese fir plantations, but less related to the distribution of soil aggregate sizes. As the major carriers for soil P stocks, the large macro-aggregates played a vital role in the cycles and reserves of soil P.
文摘The objective of this study was to eval- uate the effects of inorganic phosphorus source and phytase addition on performance, nutrient digestibility and bone mineralization in broiler chickens. In Exp. 1,150 two-day old, male broiler chicks were fed a corn-soybean meal basal diet supplemented with phos- phorus provided by dicalcium phosphate, tricalcium phosphate or defluorinated rock phosphate. Five cages containing 10 birds were allotted to each of the three treatments. In Exp. 2,120 three-day old, male broiler chicks were fed the basal diet from Exp. 1 supplemen- ted with 0,250,500 ,or 1,000 P-'rU phytase per kg of diet. Six cages containing five chicks were allotted to each of the four treatments. In Exp. 1, there was no difference in weight gain, feed intake or feed conver- sion as a result of feeding the different sources of in- organic phosphorus. The digestibility of phosphorus was significantly lower (P =0.01 ) for chicks fed di- ets supplemented with tricalcium phosphate than for chicks fed the other two diets. However, despite the lower digestibility, serum phosphorus levels did not differ among the three treatments. For Exp. 2, feedconversion showed a linear improvement (P = 0.03 ) with increasing levels of phytase inclusion ( days 0 to 33 ). Phytase supplementation resulted in linear increa- ses in the digestibility of dry matter (P = 0.02 ), crude protein ( P --- 0.04 ) and energy ( P 〈 0.01 ). Chicks fed 1,000 FTU/kg phytase had significantly higher bone calcium ( P = 0.05 ) and bone breaking strength (P = 0.04 ) than chicks fed the basal diet on day 33. In conclusion, the results of the current study indicated that the performance of birds fed diets sup- plemented with dicalcium phosphate, tricalcium phos- phate or defluorinated phosphate was similar and therefore production costs could be lowered by choo- sing the cheapest inorganic phosphorus source when formulating diets for poultry. When diets were formu- lated to meet dietary phosphorus requirements, the growth of broilers was not enhanced with phytase sup- plementation. However, increases in feed conversion and bone breaking strength and its potential to impact culling and mortality in broiler operations may be suf- ficient justification for the routine inclusion of phytase in diets fed to broilers.
文摘After 90 days cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellowbrown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions weremeasured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantlyamong soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased thatin red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to differentextent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P andCa-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reducedobviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, forchemical study of soil phosphorus, application of fresh soil samples can provide more reliable results.
文摘The correlation coefficients and scattering were studied in Ki and new inbred lines for phytic acid (PA) and inorganic phosphorus content (InP) content in seeds of tropical maize (Zea mays L.). The understanding of the variability in PA and InP characters would be useful in a breeding program. A total of 16 Ki and 25 new inbred lines of tropical maize were planted in Completely Randomized Design (CRD) during late rainy season, 2007 to early rainy season, 2009 at Inseechandrastitya Institute for Crops Research and Development, Thailand. The result showed low correlation with no statistical significant between PA and InP contents in corn seeds performed either in different sources of inbred lines or years. For PA content, most of inbred lines were skewed toward high PA (〉 900 mg/100 g) both in Ki and new inbred lines in every year. The lowest PA value found in Ki inbred lines both in two years were Ki10, Ki15, Ki20, and Ki52.30A10-S11-43-1-3 was the lowest PA inbred lines observing in two years in new germplasm.
文摘The study aimed to determine the genetic variances of phytic acid (myo-inositol 1,2,3,4,5,6 hexakis-dihydrogen phosphate) (PA) and inorganic phosphorus contents (InP) in grains of tropical maize (Zea mays L.). The understanding of genetic variances in PA and InP in tropical maize would be useful for breeding management in tropical region. A total of 16 Ki inbred lines and 26 new inbred lines of tropical maize were planted in Completely Randomized Design (CRD) on the dry season 2008 at lnseechandrastitya Institute for Crops Research and Development, Thailand. The results showed that genotypic differences were highly significant (P 〈 0.01) for InP in both sources of germplasm, but genotype effect only was found significant in new inbred lines for PA content. The values for broad sense heritability (h2b) was generally lower on PA in maize grains compared with InP both in Ki and new inbred lines [h^2b of PA: 2.42 (Ki), 14.18 (commercial hybrid extracted); h^2b of InP: 32 (Ki) and 29.53 (commercial hybrid extracted)].
基金Supported by the National Basic Research Program (973 Program) of China (No. 2013CB127402)the Fundamental Research Funds for the Central Universities, China (No. 2012YJ054)the Innovative Research Group Grant of the National Natural Science Foundation of China (No. 31121062)
文摘Plants have diverse strategies to cope with phosphorus (P) deficiency. To better understand how maize responds to P deficiency, a field experiment with two P levels, 0 and 100 kg P205 ha-1 (P0 and P100, respectively), was carried out as a part of a long-term Pfertilizer field trial. Plant and soil analyses showed that P-deficient maize reduced its growth rate, increased P use efficiency, and formed more thin roots with the diameter less than 0.6 mm at jointing and silking stages, compared to the plants treated with P100. Further, there were no differences in major inorganic P fractions (Ca2-P, Cas-P, Al-P, Fe-P, occluded P and Ca10-P) between the rhizospheric and bulk soils at each harvest, even when soil Olsen-P was only 1.38 mg kg-1. These results suggested that maize responded to P deficiency by reducing the internal P demand for growth and increasing P acquisition ability by favorable root morphological alteration at low carbon cost.
基金Project supported by the National Science & Technology Pillar Program of China during the Eleventh Five-Year Plan Period (No. 2008BADA7B02)the National Natural Science Foundation of China (No. 40773075)the Natural Science Foundation of Jiangsu Province,China (No. BK2007262)
文摘Excess phosphorus (P) from agricultural soils contributes to eutrophication in water bodies. Samples (n = 60) were taken from sites where rice paddies have been converted to vegetable fields for 0, 〈 10, 10-20, and 〉 20 years and analyzed for five inorganic P (Pi) fractions, three organic P (Po) fractions, and several soil parameters to investigate how land use conversion affects Pi and Po fractions in a peri-urban area of China with soils characteristic of many agricultural areas of Asia. Significant increases of 33, 281, 293, and 438 mg kg-i were found for soluble and loosely bound Pi (SL-Pi), aluminum-bound Pi (Al-Pi), calcium-bound Pi (Ca-Pi), and iron-bound Pi (Fe-Pi), respectively, after conversion from rice paddies to vegetable fields. Most of the increase in Pi was in the form of Fe-Pi, which increased from 8% of total P (TP) on paddy soil to 31% on the soil with 〉 20-year vegetable cultivation, followed by Al-Pi, which increased from 2% to 19% of TP. For Po fractions, there was no significant change in P concentrations. The conversion of land use from paddy fields to high intensity vegetable fields was causing significant changes in soil P fractious. Management practices were causing a buildup of soil P, primarily in the Fe-Pi fraction, followed by Ca-Pi and Al-Pi fractions. If current trends continue, a 30%-70% increase in TP could be expected in the next 20 years. Farmers in the area should reduce P application and use to maximize P uptake.
文摘Inorganic soil phosphorus extractable with sodium bicarbonate (NaHCO3-Pi), soil pH and root hairs length and density in the rhizosphere of two winter wheat cultivars (Triticum aestivum L. cv. Shichun,Sleipner) grown on a high pH Chinese silt loam (52.7 mg NaHCO3-Pi kg-1) and a Danish sandy loam (43.4mg NaHCO3-Pi kg-1) were studied to assess how these wheat cultivars differed in phoephorus uptake.The rhizosphere soil pH of two wheat cultivars grown on the two soils were fairly unchanged with increasing distance from the root surface. However the root hairs of Shichun were 2.1 times longer than those of Sleipner. Root surface area (RSA) of Shichun increased by 192% due to root hairs whereas root hairs of Sleipner increased RSA by 68% only. Hence the root system of Shichun was in contact with more soil than that of Sleipner, even though Sleipner had a longer root. Grown at the lower pH and level of NaHCO3-Pi in the Danish soil Shichun absorbed more inorganic phosphorus than Sleipner whereas at the higher pH and level of NaHCO3-Pi in the Chinese soil there was no phosphorus uptake difference between the two wheat cultivars.
基金National Natural Science Foundation of China ! 49206063.
文摘Alkaline phosphatase activity (APA) and dissolved phosphorus were monitored during the batch cultures of two bone microalgae. Results indicate that variation of APA was in the shape of 'S' curve. Different specs of dissolved phaphorus had different effects on APA. The concentrations of dis solved inorganic phosphorus (DIP) and and molecular dissolved organic phosphorus (SDOP) had a sig nificant effect on APA, while the concentration of large molecular dissolved organic phosphorus (LDOP) had a little effect on APA., and the increase of APA could accelerate the decomposing of LDOP in the medium. Results also show that algae species and abundance had why a little effect on APA.
文摘Minjingu Phosphate Rock (MPR) from Northern Tanzania and the Ikutha Phosphate Rock (IPR) found in Central-Southeast Kenya are well documented as potential sources of phosphorous (P) available in East Africa. On-farm trials in phosphate-deficient soils in Western Kenya demonstrated MPR to be as effective as triple superphosphate (TSP) - 20% P, at equal P rates. The aim of this work is to determine the distribution of phosphorus in these phosphate rocks (PRs). The different phosphorus fractions were extracted using the modified Williams extraction procedure and analysis carried on a UV/VIS spectrometer (SHIMADZU UV-220-02 and NOVASPEC II). The analysis showed that the most abundant form of phosphorus in the phosphate rocks was the Inorganic Phosphorus (IP) contributing 74.20% of total phosphorus (TP) for Minjingu, and 83,28% of total phosphorus for Ikutha phosphate rock.
基金Supported by the National Natural Science Foundation of China for Creative Research Groups by(National Natural Science Foundation of China)(No.40821004)the National Basic Research Program of China(973 Program)(No.2007CB407305)
文摘Systematic studies of the changes in dissolved inorganic nitrogen(DIN) and dissolved inorganic phosphorus(DIP) and their effects on phytoplankton over the last 30 years in the Bohai Sea are presented.The amount of sewage disposal,use of fertilizer and the Huanghe River runoff were found to have a significant influence on the DIN or DIP concentrations in the Bohai Sea over the last 30 years.Moreover,the changes in DIN and DIP resulted in changes in the limiting nutrients of phytoplankton in the Bohai Sea from nitrogen in the early 1980s to nitrogen-phosphorus in the late 1980s,and then to phosphorus after the 1990s.In addition,changes in nitrogen and phosphorus had a significant effect on the phytoplankton community structure.The half saturation constant(Ks) was used to evaluate the effect of nutrients on the phytoplankton community structure in the Bohai Sea over the last 30 years.Cell abundance percentages of dominant phytoplankton species with high Ks values for phosphorus and low Ks values for nitrogen have decreased since the 1980s,while those of dominant phytoplankton species with low Ks values for phosphorus and high Ks values for nitrogen increased during this period.
基金grants from Fok Ying Tuang Education Foundation of the Ministry of Education (No. 94019)National Natural Science Foundation of China (No. 30470992) the Government of Jiangsu Province (No. BK2003214).
文摘In most of the cereal crop, phytic acid is the main storage form of phosphorus, which can decrease the bioavailability of phosphate. Transgenic expression of phytase is regarded as an efficient way to release phosphate from phytate in transgenic plants. In this study, a plant expression vector, containing the recombinant phytase gene driven by the maize ubiquitin (Ubi) promoter was constructed and introduced into an elite rice variety via Agrobacterium-mediated transformation. During the experiment, a total of 15 independent transgenic rice lines were regenerated. The results of PCR and Southern blot indicated that the target gene was integrated into the genome of transgenic rice plants. Moreover, the RT-PCR analysis of total RNAs extracted from the immature seeds of several transgenic lines showed that the recombinant phytase gene could be normally expressed. The inorganic phosphorus content, both in the mature seeds and the leaf was significantly higher in the transgenic plants than in the untransformed wild type.
文摘The grain-filling characteristics of six rice varieties (combinations) and the relationships between their relative biochemistry composition during phytate synthesizing and grain plumpness were studied. Regarding results for ISHR1, ISHR2, R198 and JW21, with good grain plumpness, the two-step-filling in superior spikelets and inferior spikelets was not clear, while for ISHR3 and 559, with poor grain plumpness, it was very clear. From booting stage to flowering stage, the contents of phytate and inositol in varieties with good grain plumpness was obviously higher than those in varieties with poor grain plumpness. While at grain filling stage, the content of inorganic phosphorus in varieties with poor grain plumpness was obviously higher than that in varieties with good grain plumpness. The contents of phytate and inositol from booting stage to flowering stage was highly significantly correlated with the initial filling power (R_0), the mean filling rate (R_M) and grain filling percentage (P_(GF)), and the content of inorganic phosphorus at grain filling stage was negatively significantly correlated with R_0, F_M and P_(GF). Furthermore, effective approach to improving grain filling was put forward.
基金supported by the National Natural Science Foundation of China (No. 41276154, U1301235)
文摘The growth and alkaline phosphatase activity(APA) of two raphidophyceae species Chattonella marina and Heterosigma akashiwo were investigated in response to P-limitation and subsequent addition of dissolved inorganic phosphorus(DIP, Na H2PO4) and two dissolved organic phosphorus(DOP) compounds: guanosine 5-monophosphate(GMP) and triethyl phosphate(TEP). APA levels increased greatly after P-starvation as the decrease of the cellular phosphorus quotes(Qp). C. marina responded to P-limitation quickly and strongly, with 10-fold increase in APA within 24 hr after P-starvation. The larger difference between maximal and minimal QP values in C. marina indicated its high capacity in P storage. APA of H. akashiwo was maximally enlarged about 2.5 times at 48 hr of P-starvation. After the addition of nutrients, cell numbers of C. marina increased in all treatments including the P-free culture, demonstrating the higher endurance of C. marina to P-limitation. However, those of H. akashiwo increased only in DIP and GMP cultures. APA increased only after the addition of the monophosphate ester GMP. The results suggest that quick responses of C. marina to P-limitation, high capacity in P storage as well as endurance for P-depletion provide this species an ecological advantage in phytoplankton community competition under DIP-limited conditions.
基金Under the auspices of National Natural Science Foundation of China(No.42177089,U1906215,41977190)。
文摘The Bohai Sea is one of the most polluted sea areas in China.In this study,we used 2184 integrated concentrations of dissolved inorganic nitrogen(DIN)and dissolved inorganic phosphorus(DIP)in the Bohai Sea of China during spring(March,April,and May),summer(June,July,and August),and autumn(October and November)from 2015 to 2022 to explore the trends and sources of nutrients variations.From 2015 to 2022,DIN showed a downward trend until 2020 and then an upward trend,whereas DIP exhibited a stable trend with a slight decrease.The concentrations of DIN and DIP had similar seasonal pattern which was the highest in autumn(0.292±0.247 mg/L for DIN and 0.013±0.016 mg/L for DIP)but lower in spring(0.267±0.238 mg/L for DIN and 0.006±0.010 mg/L for DIP)and summer(0.263±0.324 mg/L for DIN and 0.008±0.010 mg/L for DIP).Sources of DIN and DIP apportioned by the positive matrix factorization(PMF)model were riverine input,sediment resuspension,sewage discharge,atmospheric deposition,and underground input.During 2015-2022,the largest contributor to DIN was sewage discharge(28.7%)and the largest contributor to DIP was sediment resuspension(44.6%).Seasonally,DIN in spring and autumn was dominated by sewage discharge(45.4%and 27.8%,re-spectively).Whereas in summer,it was dominated by riverine input(32.4%)and atmospheric deposition(29.7%).DIP was dominated by sediment resuspension during all three seasons(35.8%-52.5%).In addition,the increase in DIN concentrations in 2021 and 2022 were mainly due to the incremental input of river discharge and atmospheric deposition caused by increased precipitation during sum-mer and autumn.
文摘Succession rules of soil acidity quality of larch plantations in first rotation at different development stages, succession rules of soil acidity quality of young stand of larch plantations in second rotation and the relationship between soil acidity and various forms of organic phosphorus and inorganic phosphorus were studied in mountainous area of eastern part of Northeastern China. The results showed that active acidity (pH value) inrhizosphere soil decreased continually with stand age increasing from young stand, half-mature stand, near mature stand to mature stand, but active acidity (pH value) in non-rhizosphere soil, exchange acidity, exchangeable aluminium, total hydrolytic acidity, and the ratio of exchange acidity and total hydrolytic acidity in rhizosphere soil and in non-rhizosphere soil increased apparently; total organic P, moderately resistant organic P, and highly resistant organic P in soil decreased at all age stages in larch plantations when soil acidity added. For rhizosphere soil of all stands of larch plantations at different development stages,there was positive correlation between Ca-P (except in young stand), Al-P(except in half-mature stand), Fe-P (except in near mature stand and mature stand), O-P (except in young stand), and soil active acidity,respectively; For rhizosphere soil, there was negative correlation between Ca-P (except in half-mature stand), Al-P(except in young stand), O-P, and exchange acidity, exchangeable aluminium, there was also negative correlation between Ca-P, Al-P(except in young stand and half-mature stand), Fe-P, O-P, and total hydrolytic acidity respectively. For rhizosphere soil, the correlation coefficient between Ca-P, O-P and total hydrolytic aciditydecreased, respectively, as stand ages up and that between Fe-P and exchange acidity,exchangeable aluminium increased, respectively, as stand ages grew. For non-rhizosphere soil, there was not significant correlation between soil acidity and various forms of inorganic phosphorus and organic phosphorus,respectively.
基金supported by grants from the National Key Research and Development Program of China (2022YFD1200400)the Key Research and Development Plan of Hubei Province (2021ABA011)+3 种基金Fundamental Research Funds for the Central Universities (2662022ZKPY001)a Higher Education Discipline Innovation Project (B20051)an Agriculture and Food Research Initiative (AFRI)award[2020-67013-30908/project accession number 1022148]of the US Department of Agriculture National Institute of Food and Agriculturethe China Postdoctoral Science Foundation (2023M731230)。
文摘Phosphorus is a major nutrient vital for plant growth and development,with a substantial amount of cellular phosphorus being used for the biosynthesis of membrane phospholipids.Here,we report that NON-SPECIFIC PHOSPHOLIPASE C4(NPC4)in rapeseed(Brassica napus)releases phosphate from phospholipids to promote growth and seed yield,as plants with altered NPC4 levels showed significant changes in seed production under different phosphate conditions.Clustered regularly interspaced short palindromic repeat(CRISPR)/CRISPR-associated nuclease 9(Cas9)-mediated knockout of Bna NPC4 led to elevated accumulation of phospholipids and decreased growth,whereas overexpression(OE)of Bna NPC4resulted in lower phospholipid contents and increased plant growth and seed production.We demonstrate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in vitro,and plants with altered Bna NPC4 function displayed changes in their sphingolipid and glycerolipid contents in roots,with a greater change in glycerolipids than sphingolipids in leaves,particularly under phosphate deficiency conditions.In addition,Bna NPC4-OE plants led to the upregulation of genes involved in lipid metabolism,phosphate release,and phosphate transport and an increase in free inorganic phosphate in leaves.These results indicate that Bna NPC4 hydrolyzes phosphosphingolipids and phosphoglycerolipids in rapeseed to enhance phosphate release from membrane phospholipids and promote growth and seed production.